SCHWINGUNGSTECHNIK

WILHELM HERM. MÜLLER

Entwicklung. Service. Partnerschaft.

	Technische GrundlagenSeite	5
1	Gummi-Metall-ElementeSeite	10
2	MaschinenschuheSeite	51
3	Gummi-HohlfedernSeite	79
4	Anschlagpuffer aus PUzell 30Seite	85
5	Elastomer-Federn (Polyurethan)Seite	104
6	SonderelementeSeite	107

Definitionen

Elastomer-Federn

Elastomer-Federn sind Bauteile aus hochelastischen Werkstoffen. Der Elastomer-Federkörper entspricht durch seine Form und sein Material einem genau definierten Federungsverhalten.
Elastomer-Federn verdanken ihre guten Isolationseigenschaften ihrer Fähigkeit, sich bis zu hohen Dehnungswerten zu verformen. Elastomer-Federn können nur dann ihre guten Eigenschaften zur Schwingungsisolation erfüllen, wenn sie richtig ausgelegt und eingesetzt sind.

Federungsverhalten

Wir bieten Federwerkstoffe aus diversen Kautschuk-, PU-Kompakt- oder PU-Schaumwerkstoffen an. Bei der Auswahl des geeigneten Federwerkstoffes und der Wahl der geeigneten Federgeometrie sind Ihnen unsere Fachberater gern behilflich.

Gummifederarten

Gummifedern, die keine festhaftenden Anschlussteile besitzen, werden ungebundene Gummifedern genannt (Gummi-Puffer, Gummi-Hohlfedern usw.). Gummifedern, die fest mit Metallteilen verbunden sind, nennt man gebundene Gummifedern (Gummi-Metallpuffer, Gummi-Metallschienen usw.).

Wirkungsweise

Elastomer-Federn werden zur Schwingungsisolation von Maschinen und Anlagen eingesetzt. Elastomer-Federn mindern die Weiterleitung von Körperschall- und Erschütterungsschwingungen. Sie werden eingesetzt zur Aktiv-Isolation (Schwingungen die ein Aggregat oder eine Anlage verursachen werden nicht bzw. deutlich reduziert in den Aufstellungsuntergrund übertragen) oder zur Passiv-Isolation (Schwingungen aus der Umgebung werden nicht oder stark vermindert in die Anlage übertragen).

Härte nach Shore

Eine wichtige Größe zur Charakterisierung von Elastomerwerkstoffen ist ihre Härte. Unter der Härte nach Shore wird der Widerstand gegen das Eindringen eines Körpers vorgegebener Form unter einer definierten Kraft verstanden. Die Härte-Skala umfasst einen Bereich von 0 bis 100.

Für Federungszwecke verwendete Elastomere werden in der Regel nach Shore A gemessen (DIN 53 505 – A). Toleranzbereiche für die Härtemessung betragen üblicherweise ± 5 Shore.

Kriechen

Kriechen ist die zeitabhängige Zunahme des Federweges einer unter konstanter Last stehenden Feder. Es ist eine Folge des zeitabhängigen Nachlassens der Rückstellkraft, einer unter ständiger Last stehenden Elastomer-Feder. Das Kriechen verläuft bei konstanter Temperatur linear proportional zum Logarithmus der Zeit.

Temperatureinflüsse

Elastomer-Federn können in einem breiten Temperaturbereich von ca. -50°C bis +90°C eingesetzt werden. Die Temperatur beeinflusst die Federrate und die Dämpfung der Elastomer-Feder. Mit steigender Temperatur verringert sich die Dämpfung, mit fallenden Temperaturen steigt die Dämpfung bis zum Maximalwert an.

5

Be rechnung sgrundlagen

Formelzeichen	Einheiten	Benennungen
a	m/s ²	Beschleunigung
С	N/mm	Federrate
C _v	Nm/Grad	Verdrehfederrate
d	dB	Dämmung
E	N/mm²	Elastizitätsmodul
f	Hz	Frequenz
f _e	Hz	Eigenfrequenz
f _{err}	Hz	Erregerfrequenz
F	N, kN	Kraft
F _{err}	N, kN	Erregerkraft
G	N, kN	Gewichtskraft
m	kg	Masse
g	m/s ²	Erdbeschleunigung
М	Nm	Moment
S	mm	Federweg
φ	°(Grad)	Verdrehwinkel
s _o	mm	Amplitude
n	min ⁻¹	Drehzahl
n	Stück	Lagerpunkte
Δs	mm	Federwegzunahme
t	S	Zeit
V	m/s	Geschwindigkeit
W	Nm	Arbeitsaufnahme
η		Isoliergrad
D	dB	Dämpfung
v	min ⁻¹	Schwingungszahl
V _e	min ⁻¹	Eigenschwingzahl
V _{err}	min ⁻¹	Erregerschwingungszahl
σ	N/mm²	Druckspannung
ω	S ⁻¹	Kreisfrequenz

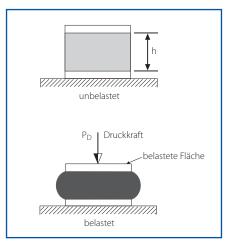
Federung

Wirkt eine Kraft oder ein Moment auf eine Elastomer-Feder, so verformt sich die Feder um einen Federweg s bzw. um einen Verdrehwinkel φ.

Das Verhältnis der aufgewendeten Kraft bzw. des Momentes zum Verdrehwinkel bezeichnet man als Federrate c oder als Verdrehfederrate c.

Je nach Formgebung des Elementes stellt sich eine progressive, eine lineare oder eine degressive Kennlinie ein.

Nur bei einer linearen Kennlinie ergibt sich über den gesamten Federungsbereich eine konstante Federrate oder eine konstante Verdrehung.


Bei den beiden anderen Kurvenverläufen ist die Federrate abhängig von der Verformung des Isolierelementes. Durch Anlegen der Tangente im Arbeitspunkt A bei der tatsächlichen Belastung F, oder des tatsächlichen Momentes M, erhält man die Strecke ssubA bzw. φ_{subA}.

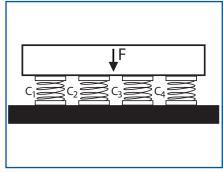
Der Quotient aus Belastung und dieser so ermittelten Strecke ergibt die Federrate im Arbeitspunkt.

Stahlfedern haben über den gesamten Arbeitsbereich eine konstante Federkennlinie.

Druckbelastete Elastomer-Federn neigen zu einem progressiven Kennlinienverlauf. Schub- und zugbelastete Elastomer-Federn neigen zu einem degressiven Kennlinienverlauf. Zugbeanspruchungen sind in der Regel nicht zugelassen.

Elastomer-Federn aus kompakten Werkstoffen sind nicht kompressibel. Damit sie ihre isolierende Wirkung entfalten können, ist ein ausreichender Freiraum für die Ausbauchung erforderlich.

Federelement im entlasteten- bzw. belasteten Zustand


Kombinationsmöglichkeiten von Federelementen

Elastomer-Federn können in Kombination miteinander eingesetzt werden.

Parallelschaltung von Elastomer-Federn

$$c_{ges} = c_1 + c_2 + c_3 + c_n$$

$$s = \frac{F}{c_{ges}} = \frac{F}{c_{1}+c_{2}+c_{3}+c_{n}}$$

Federn parallel eingesetzt

7

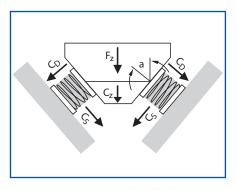
	linear	progressiv	degressiv
Feder- diagramm	$F, (M)$ $F_{\underline{A}}, M_{\underline{A}} A$ $S_{\underline{A}} S_{\underline{A}} S_{\underline{A}}$	F_{A}, M_{A} A F_{A}, M_{A} A	$F, (M)$ $F_{\underline{A}}, M_{\underline{A}} A$ $\downarrow S_{\underline{SubA}}$ $(\varphi_{\underline{SubA}})$ $S, (\varphi)$
Federrate im Arbeits- punkt A	$c_A = \frac{F_A}{S_A}$ $c_\Phi = \frac{M_A}{\Phi_A}$	$c_A = \frac{F_A}{S_{subA}}$ $c_{\phi} = \frac{M_A}{\varphi_{subA}}$	$c_A = \frac{F_A}{S_{subA}}$ $c_{\phi} = \frac{M_A}{\phi_{subA}}$
Federrate	$C = \frac{F}{S}$ $C_V = \frac{M}{\phi}$	$c = \frac{dF}{ds}$ $c_V = \frac{dM}{d \varphi}$	$c = \frac{dF}{ds}$ $c_V = \frac{dM}{d\phi}$


Kennlinienverläufe

Reihenschaltung von Elastomer-Federn

$$s = \frac{F}{c_{ges}} = \frac{F}{c_1} + \frac{F}{c_2} + \frac{F}{c_3} + \frac{F}{c_n}$$

$$\frac{1}{c_{ges}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \frac{1}{c_4} + \dots + \frac{1}{c_n}$$



Federn in Reihe eingesetzt

Druck-Schubbelastung

$$s = \frac{F_z}{C_z}$$

$$c_z = 2*(c_D \cos^2_{\alpha} + c_s \sin^2_{\alpha})$$

Federn mit Druck- und Schubbelastung

Eigenfrequenz, Eigenschwingungszahl, Resonanz

Feder-Masse-Systeme schwingen sobald sie angeregt werden. Man unterscheidet zwei Anregearten: Anregung durch Stoß und kontinuierliche Anregung. Wird das Feder-Masse-System durch Stoß angeregt, z. B. durch einen einzelnen Hammerschlag, dann schwingt es in seiner Eigenfrequenz (Eigenschwingungszahl) solange aus, bis die dem System zugeführte Energie durch Dämpfung in Wärme umgesetzt ist.

Wird das Feder-Masse-System kontinuierlich, z. B. durch einen Kolbenkompressor angeregt, so schwingt das System mit der ihm aufgezwungenen Frequenz (Erregerfrequenz, Eigenschwingungszahl).

Ist die Anregefrequenz und die Eigenfrequenz des Isolierelementes gleich, so schwingen sie in Resonanz. Ist nun keine Dämpfung im System vorhanden, z. B. bei Stahlfedern, würden die Schwingungsausschläge unendlich groß.

Die Eigenschwingungszahl v_e (Schwingungen pro Minute) ist 60 mal höher als die Eigenfrequenz f_e (Schwingungen pro Sekunde).

Die Systemeigenfrequenz errechnet sich:

$$f_e = \frac{1}{2 * \pi} * \sqrt{\frac{c}{m} * 1000} \text{ Hz}$$

bzw. die Eigenschwingungszahl v .:

$$v_e = \frac{-30}{\pi} * \sqrt{\frac{c}{m}} * 1000 \text{ min}^{-1}$$

Resonanz liegt vor, wenn die Frequenz einer erregenden Schwingung mit der Eigenfrequenz eines Schwingsystems übereinstimmt.

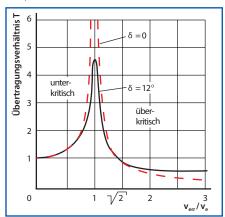
Voraussetzung für eine Dämmung bzw. Isolierung ist, dass die Erregerfrequenz f_{err} um den Faktor $\sqrt{2}=1,414\,$ größer ist als die Eigenfrequenz des eingesetzten Isolierelementes.

Der Isoliergrad η wird bestimmt:

$$\eta = 1 - \frac{1}{\left(\frac{f_{err}}{f_e}\right)^2 - 1}$$

η in %	0	0,667	0,875	0,958	0,984	0,990
f _e	1	1	1	1	1	1
f _{err}	1,414	2	3	5	8	10

Isoliergrad bezogen auf das Frequenzverhältnis



Federung

Die Dämmung D wird bestimmt:

$$D = 20 log \left[\left(\frac{f_{err}}{f_e} \right)^2 - 1 \right]_{dB}$$

Zur sicheren Auslegung einer elastischen Lagerung ist es wichtig, die Masse des zu lagernden Systems und die Erregerfrequenz zu kennen.

Resonanzkurve

Der Einsatz der Elastomer-Federn findet nur im überkritischen Bereich statt. Eine Auslegung im unterkritischen Bereich soll vermieden werden.

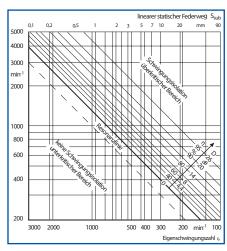
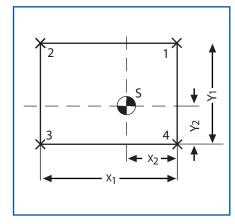



Diagramm zur Ermittlung des Isolierwirkungsgrades

Vorgehensweise bei außermittigem Schwerpunkt:

Hier müssen in Abhängigkeit der erforderlichen Unterstützungskräfte unterschiedliche Federtypen eingesetzt werden. Bei der Auswahl helfen Ihnen unsere Fachberater.

Skizze zur Bestimmung des Schwerpunktes

Ermittlung der Einzelmassen

m1=
$$m^* \frac{(X_1 - X_2) * Y_2}{X_1 * Y_1}$$

$$m2 = m*\frac{X_2 * Y_2}{X_1 * Y_1}$$

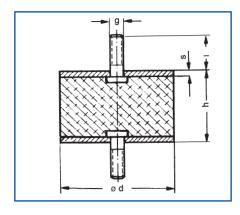
$$m3 = m*\frac{X_2 * (Y_1 - Y_2)}{X_1 * Y_1}$$

$$m4 = m^* \frac{(X_1 - X_2) * (Y_1 - Y_2)}{X_1 * Y_1}$$

1.1 Puffer

Ausführung A (Beidseitig Gewindebolzen)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

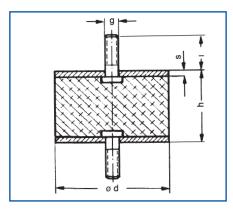
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	l [mm]	g	s [mm]	Druckkraft [N]	Schubkraft [N]
8	8	6,0	M 3	1,0	23	9
9	12	10,0	M 4	1,0	29	11
10	10	10,0	M 4	1,0	39	14
10	15	10,0	M 4	1,0	39	14
15	8	10,0	M 4	1,0	90	35
15	15	10,0	M 4	1,0	90	35
15	20	13,0	M 4	1,0	90	35
15	25	10,0	M 4	1,0	90	35
15	30	13,0	M 4	1,0	90	35
18	9,5	16,0	M 6	1,5	125	50
20	15	18,0	M 6	1,5	150	60
20	20	18,0	M 6	1,5	150	60
20	25	18,0	M 6	1,5	150	60
25	10	18,0	M 6	1,5	250	100
25	15	18,0	M 6	1,5	250	100
25	20	18,0	M 6	1,5	250	100
25	25	18,0	M 6	1,5	250	100
25	30	18,0	M 6	1,5	250	100
30	15	21,0	M 8	1,5	350	150
30	20	21,0	M 8	1,5	350	150
30	25	21,0	M 8	1,5	350	150
30	30	21,0	M 8	1,5	350	150
30	40	21,0	M 8	1,5	600	250
40	20	23,0	M 8	1,5	600	250
40	30	23,0	M 8	1,5	600	250

Ausführung A (Beidseitig Gewindebolzen)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = ca. 40° Shore A

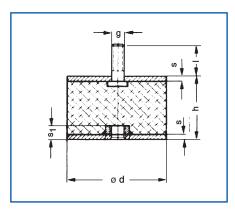
Abmessung und Kenndaten (Fortsetzung)

d [mm]	h [mm]	l [mm]	g	s [mm]	Druckkraft [N]	Schubkraft [N]
40	40	23,0	M 8	1,5	600	250
50	20	30,0	M 10	2,0	1.000	400
50	25	30,0	M 10	2,0	1.000	400
50	30	30,0	M 10	2,0	1.000	400
50	40	30,0	M 10	2,0	1.000	400
50	45	30,0	M 10	2,0	1.000	400
50	50	30,0	M 10	2,0	1.000	400
70	45	30,0	M 10	3,0	1.900	750
75	25	37,0	M 12	3,0	2.200	900
75	40	37,0	M 12	3,0	2.200	900
75	45	37,0	M 12	3,0	2.200	900
75	50	37,0	M 12	3,0	2.200	900
75	55	37,0	M 12	3,0	2.200	900
100	40	41,0	M 16	4,0	4.000	1.500
100	55	46,0	M 16	4,0	4.000	1.500
100	60	46,0	M 16	4,0	4.000	1.500
100	75	46,0	M 16	4,0	4.000	1.500
150	50	46,0	M 16	5,0	9.000	3.500
150	55	46,0	M 16	5,0	9.000	3.500
150	60	46,0	M 16	5,0	9.000	3.500
150	75	46,0	M 16	5,0	9.000	3.500
200	100	50,0	M 20	5,0	17.000	6.000

1.1 Puffer

Ausführung B (Gewindebolzen und Innengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

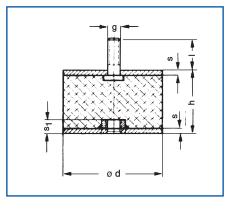
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	l [mm]	g	s ₁ [mm]	Druckkraft [N]	Schubkraft [N]
8	8	6,0	M 3	3,0	23	9
10	10	10,0	M 4	5,0	35	14
15	15	11,0	M 6	4,5	90	35
15	20	13,0	M 6	4,0	90	35
20	15	19,0	M 6	6,0	150	60
20	20	19,0	M 6	6,0	150	60
20	25	19,0	M 6	6,0	150	60
25	15	19,0	M 6	6,0	250	100
25	20	19,0	M 6	6,0	250	100
25	25	19,0	M 6	6,0	250	100
25	30	19,0	M 6	6,0	250	100
25	33	19,0	M 6	6,0	250	100
30	15	21,0	M 8	7,0	350	150
30	20	21,0	M 8	7,0	350	150
30	30	21,0	M 8	7,0	350	150
30	33	21,0	M 8	7,0	350	150
30	40	21,0	M 8	7,0	350	150
40	20	23,5	M 8	7,0	600	250
40	30	21,0	M 8	7,0	600	250
40	40	21,0	M 8	7,0	600	250
50	20	30,0	M 10	9,0	1.000	400
50	25	30,0	M 10	9,0	1.000	400
50	30	30,0	M 10	9,0	1.000	400
50	40	30,0	M 10	9,0	1.000	400
50	45	30,0	M 10	9,0	1.000	400

Ausführung B (Gewindebolzen und Innengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

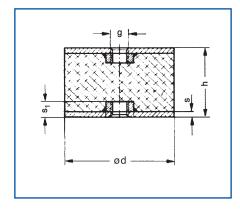
Abmessung und Kenndaten (Fortsetzung)

d [mm]	h [mm]	l [mm]	g	s ₁ [mm]	Druckkraft [N]	Schubkraft [N]
50	50	30,0	M 10	9,0	1.000	400
70	45	30,0	M 10	9,0	1.900	750
75	40	37,0	M 12	11,5	2.200	900
75	45	37,0	M 12	11,5	2.200	900
75	50	37,0	M 12	11,5	2.200	900
75	55	37,0	M 12	11,5	2.200	900
100	40	41,0	M 16	17,0	4.000	1.500
100	55	46,0	M 16	17,0	4.000	1.500
100	60	46,0	M 16	17,0	4.000	1.500
100	75	46,0	M 16	17,0	4.000	1.500
150	50	46,0	M 16	20,0	9.000	3.500
150	55	46,0	M 16	20,0	9.000	3.500
150	60	46,0	M 16	20,0	9.000	3.500
150	75	46,0	M 16	20,0	9.000	3.500
200	100	50,0	M 20	20,0	17.000	6.000

1.1 Puffer

Ausführung C (Beiderseits Innengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

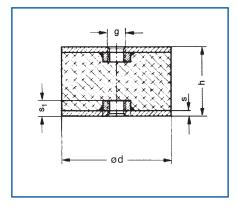
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	s [mm]	g	s ₁ [mm]	Druckkraft [N]	Schubkraft [N]
8	8	1,0	M 3	3,0	23	9
10	10	1,0	M 4	4,0	35	14
13	26	1,0	M 4	4,0	60	24
15	15	1,0	M 4	4,0	90	35
15	20	1,0	M 4	4,0	90	35
20	20	1,5	M 6	6,0	150	60
20	25	1,5	M 6	6,0	150	60
25	20	1,5	M 6	6,0	250	100
25	25	1,5	M 6	6,0	250	100
25	30	1,5	M 6	6,0	250	100
25	33	1,5	M 6	6,0	250	100
30	20	1,5	M 8	7,0	350	150
30	30	1,5	M 8	7,0	350	150
30	33	1,5	M 8	7,0	350	150
30	40	1,5	M 8	7,0	350	150
40	30	1,5	M 8	7,0	600	250
40	40	1,5	M 8	7,0	600	250
50	30	2,0	M 10	9,0	1.000	400
50	40	2,0	M 10	9,0	1.000	400
50	45	2,0	M 10	9,0	1.000	400
50	50	2,0	M 10	9,0	1.000	400
70	45	2,0	M 10	9,0	1.900	750
75	40	3,0	M 12	11,5	2.200	900
75	45	3,0	M 12	11,5	2.200	900
75	50	3,0	M 12	11,5	2.200	900

Ausführung C (Beiderseits Innengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

15

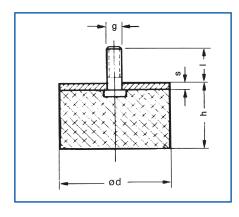
Abmessung und Kenndaten (Fortsetzung)

d [mm]	h [mm]	s [mm]	g	s ₁ [mm]	Druckkraft [N]	Schubkraft [N]
75	55	3,0	M 12	11,5	2.200	900
100	40	4,0	M 16	17,0	4.000	1.500
100	55	4,0	M 16	17,0	4.000	1.500
100	60	4,0	M 16	17,0	4.000	1.500
100	75	4,0	M 16	17,0	4.000	1.500
150	50	5,0	M 16	20,0	9.000	3.500
150	55	5,0	M 16	20,0	9.000	3.500
150	60	5,0	M 16	20,0	9.000	3.500
150	75	5,0	M 18	20,0	9.000	3.500
200	100	5,0	M 20	20,0	17.000	6.000

1.1 Puffer

Ausführung D (Einerseits mit Gewindebolzen)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart = $ca. 70^{\circ}$ Shore A

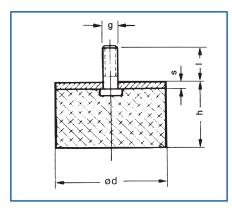
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	s [mm]	g	l [mm]	Druckkraft [N]	Schubkraft [N]
15	8	1,0	M 4	11,0	90	35
15	15	1,0	M 4	11,0	90	35
18	7	1,0	M 6	16,0	115	45
20	13	1,5	M 6	18,0	150	60
20	15	1,5	M 6	18,0	150	60
20	20	1,5	M 6	18,0	150	60
20	25	1,5	M 6	18,0	150	60
25	13	1,5	M 6	18,0	250	100
25	15	1,5	M 6	18,0	250	100
25	17	1,5	M 6	18,0	250	100
25	20	1,5	M 6	18,0	250	100
25	25	1,5	M 6	18,0	250	100
25	28	1,5	M 6	18,0	250	100
25	30	1,5	M 6	18,0	250	100
30	15	1,5	M 8	20,0	350	150
30	20	1,5	M 8	20,0	350	150
30	30	1,5	M 8	20,0	350	150
30	33	1,5	M 8	20,0	350	150
30	40	1,5	M 8	20,0	350	150
40	28	1,5	M 8	20,0	600	250
40	30	1,5	M 8	23,0	600	250
40	40	1,5	M 8	23,0	600	250
50	20	2,0	M 10	30,0	1.000	400
50	25	2,0	M 10	30,0	1.000	400
50	30	2,0	M 10	30,0	1.000	400

Ausführung D (Einerseits mit Gewindebolzen)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = ca. 40° Shore A

Abmessung und Kenndaten (Fortsetzung)

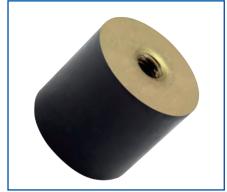
d [mm]	h [mm]	s [mm]	g	l [mm]	Druckkraft [N]	Schubkraft [N]
50	40	2,0	M 10	30,0	1.000	400
50	45	2,0	M 10	30,0	1.000	400
50	50	2,0	M 10	30,0	1.000	400
70	45	3,0	M 10	30,0	1.900	750
75	25	3,0	M 12	37,0	2.200	900
75	40	3,0	M 12	37,0	2.200	900
75	50	3,0	M 12	37,0	2.200	900
75	55	3,0	M 12	37,0	2.200	900
100	40	4,0	M 16	41,0	4.000	1.500
100	50	4,0	M 16	41,0	4.000	1.500
100	55	4,0	M 16	41,0	4.000	1.500
100	60	4,0	M 16	41,0	4.000	1.500
100	75	4,0	M 16	41,0	4.000	1.500
150	50	5,0	M 16	46,0	9.000	3.500
150	55	5,0	M 16	46,0	9.000	3.500
150	60	5,0	M 16	46,0	9.000	3.500
150	75	5,0	M 16	46,0	9.000	3.500
200	100	5,0	M 20	50,0	17.000	6.000

1.1 Puffer

Ausführung E (Einerseits mit Innengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).


Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

18

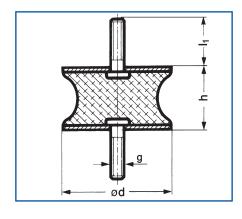
Abmessung und Kenndaten

d [mm]	h [mm]	s [mm]	g	s ₁ [mm]	Druckkraft [N]	Schubkraft [N]
10	10	1,0	M 4	4,0	39	32
15	8	1,0	M 4	4,0	80	32
15	15	1,0	M 4	4,0	80	60
20	15	1,5	M 6	6,0	150	60
20	20	1,5	M 6	6,0	150	60
20	25	1,5	M 6	6,0	150	60
25	13	1,5	M 6	6,0	250	100
25	15	1,5	M 6	6,0	250	100
25	17	1,5	M 6	6,0	250	100
25	20	1,5	M 6	6,0	250	100
30	15	1,5	M 8	7,0	350	150
30	30	1,5	M 8	7,0	350	150
40	30	1,5	M 8	7,0	600	250
40	40	1,5	M 8	7,0	600	250
50	20	2,0	M 10	9,0	1.000	400
50	30	2,0	M 10	9,0	1.000	400
75	25	3,0	M 12	11,5	2.200	900
100	40	4,0	M 16	17,0	4.000	1.500
100	55	4,0	M 16	17,0	4.000	1.500
100	60	4,0	M 16	17,0	4.000	1.500
150	50	5,0	M 16	20,0	9.000	3.500
200	100	5,0	M 20	20,0	17.000	6.000

1.1 Puffer

Ausführung AK (Beiderseits mit Außengewinde)

Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

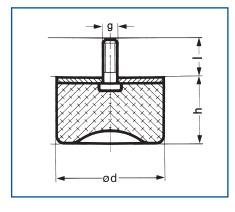
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	g	l ₁ [mm]	Druckkraft [N]	Schubkraft [N]
20	15	M 6	19,0	325	50
30	20	M 8	20,5	735	90
50	30	M 10	34,0	1.650	255
75	40	M 12	37,0	4.120	610

1.1 Puffer

Ausführung SD (Einerseits mit Gewindebolzen)


Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart = $ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

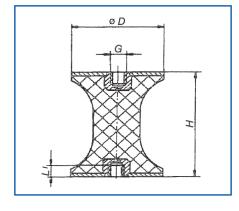
20

Abmessung und Kenndaten

d [mm]	h [mm]	s [mm]	g	l [mm]	Druckkraft [N]
15	14	1,0	M 4	13,0	90
20	17	1,5	M 6	18,0	150
20	23	1,5	M 6	18,0	150
20	28	1,5	M 8	20,0	150
25	18	1,5	M 6	18,0	250
40	28	1,5	M 8	23,0	600
50	28	2,0	M 10	33,0	1.000
70	43	3,0	M 10	30,0	1.900
75	37	3,0	M 12	37,0	2.200
100	50	4,0	M 16	45,0	4.000

1.1 Puffer

Ausführung TC (Beiderseits mit Innengewinde)


Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

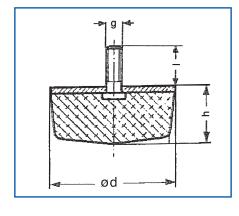
21

Abmessung und Kenndaten

d [mm]	h [mm]	g	լ _, [mm]
30	20	M 8	8,0
40	48	M 8	8,0
50	30	M 10	10,0
75	40	M 12	12,0
100	55	M 16	16,0

1.1 Puffer

Ausführung K (Einerseits mit Gewindebolzen)


Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

± ca. 5° Shore A Toleranzen: Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

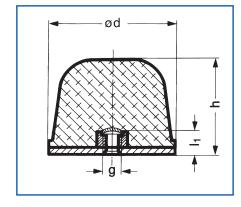
weich = $ca. 40^{\circ}$ Shore A

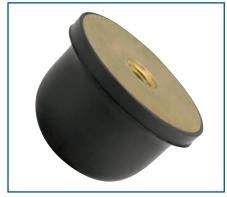
Abmessung und Kenndaten

d [mm]	h [mm]	g	l [mm]	Stoßkraft [N]	Stoßenergie [Nm]
25	17	M 6	18,0	1.000	2,5
50	18	M 10	28,0	4.000	5,5
80	25	M 12	35,0	20.000	6,4
125	45	M 16	45,0	50.000	320

1.1 Puffer

Ausführung KE (Einerseits mit Innengewinde)


Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

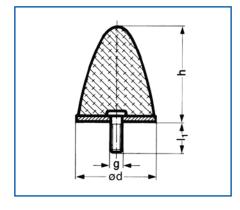
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	g	l ₁ [mm]	Stoßkraft [N]	Stoßenergie [Nm]
50	35	M 10	10,0	4.000	23
80	60	M 12	12,0	12.000	120
125	90	M 16	16,0	30.000	420

1.1 Puffer

Ausführung KP (Einerseits mit Gewindebolzen)


Andere Druckkräfte, Abmessungen und Gewindelängen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

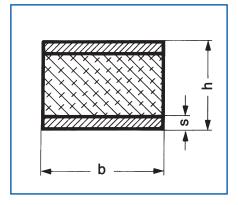
weich = $ca. 40^{\circ}$ Shore A

Abmessung und Kenndaten

d [mm]	h [mm]	g	l _, [mm]	Stoßkraft [N]	Stoßenergie [Nm]
21	24	M 6	19,0	510	2,4
32	36	M 8	20,5	1.400	8,0
52	58	M 10	28,0	3.800	37,0
75	89	M 12	37,0	8.100	120,0
115	136	M 16	43,0	16.500	412,0
165	195	M 16	43,0	38.600	1.200,0

1.2 Schienen

(Teil 1)


Andere Druckkräfte und Abmessungen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: \pm ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart = ca. 70° Shore A

weich = $ca. 40^{\circ}$ Shore A

25

Abmessung und Kenndaten

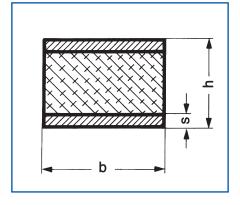
b [mm]	h [mm]	l [mm]	s [mm]	Druckkraft [N/cm]	Schubkraft [N/cm]
40	20	2.000	5	355	100
40	35	2.000	10	305	100
40	40	2.000	10	225	100
40	45	2.000	10	205	100
40	50	2.000	10	205	100
50	35	2.000	10	410	125
50	45	2.000	10	325	125
50	55	2.000	10	255	125
50	60	2.000	10	255	110
50	70	2.000	10	255	100
60	35	2.000	10	560	150
60	60	2.000	10	305	137
60	80	2.000	10	305	120
70	30	2.000	10	665	182
70	45	2.000	10	530	182
70	50	2.000	10	410	182
70	55	2.000	10	355	180
70	65	2.000	10	355	180
70	80	2.000	10	355	145
80	45	2.000	10	665	205
80	80	2.000	10	410	165

Anmerkung:

Schienen können für kundenspezifische Anwendungen in Teillängen gesägt oder mit Bohrungen bzw. Gewinde konfektioniert werden.

1.2 Schienen

(Teil 2)


Andere Druckkräfte und Abmessungen auf Anfrage.

Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: \pm ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A kurzfristig lieferbar.

Lieferbar auch in: hart $= ca. 70^{\circ}$ Shore A

weich = $ca. 40^{\circ}$ Shore A

26

Abmessung und Kenndaten

b [mm]	h [mm]	l [mm]	s [mm]	Druckkraft [N/cm]	Schubkraft [N/cm]
100	45	2.000	15	815	245
100	55	2.000	15	815	230
100	60	2.000	15	745	230
100	65	2.000	15	665	230
100	70	2.000	15	610	230
100	75	2.000	15	560	220
100	80	2.000	15	510	215
100	90	2.000	15	510	205
120	45	2.000	15	915	265
120	60	2.000	15	915	265
120	70	2.000	15	765	265
150	50	2.000	15	1.020	430
150	60	2.000	15	940	387
150	80	2.000	15	855	387
150	100	2.000	15	775	387
200	70	2.000	15	1.630	570
200	90	2.000	15	1.510	570
200	100	2.000	15	1.385	570
200	110	2.000	15	1.265	560

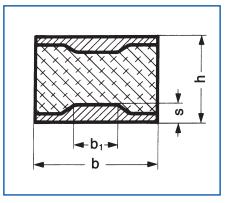
Anmerkung:

Schienen können für kundenspezifische Anwendungen in Teillängen gesägt oder mit Bohrungen bzw. Gewinde konfektioniert werden.

1.2 Schienen

Ausführung 2

Andere Druckkräfte und Abmessungen auf Anfrage.


Vorgenannte Belastungswerte beziehen sich auf die Qualität NK (Naturkautschuk ca. 55° Shore A).

Toleranzen: ± ca. 5° Shore A Standardqualität: mittel = ca. 55° Shore A

kurzfristig lieferbar.

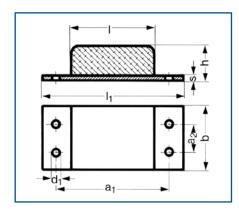
Lieferbar auch in: hart = ca. 70° Shore A

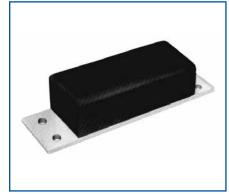
weich = ca. 40° Shore A

27

Abmessung und Kenndaten

b [mm]	h [mm]	l [mm]	s [mm]	b ₁ [mm]	Druckkraft [N/cm]	Schubkraft [N/cm]
50	35	2.000	10	17	255	100
50	45	2.000	10	17	255	100
50	55	2.000	10	17	255	100
50	60	2.000	10	17	255	100
50	70	2.000	10	17	255	100
60	35	2.000	11	20	305	120
60	60	2.000	11	20	305	120
70	30	2.000	12	20	355	145
70	45	2.000	12	20	355	145
70	55	2.000	12	20	355	145
70	80	2.000	12	20	355	145
100	45	2.000	15	20	510	205
100	55	2.000	15	20	510	205
100	60	2.000	15	20	510	205
100	70	2.000	15	20	510	205
100	80	2.000	15	20	510	205


Anmerkung:

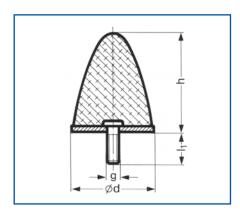

Schienen können für kundenspezifische Anwendungen in Teillängen gesägt oder mit Bohrungen bzw. Gewinde konfektioniert werden.

1.3 Schwingmetall®

Anschlag-Schiene

28

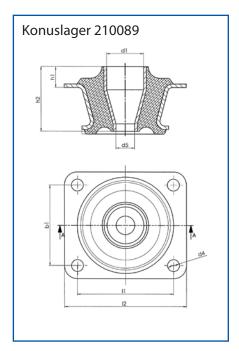
Abmessung und Kenndaten

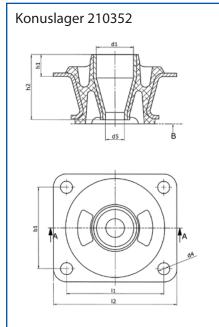

b [mm]	h [mm]	l [mm]	I ₁ [mm]	s [mm]	a ₁ [mm]	a ₂ ¹⁾ [mm]	d ₁ [mm]	Gewicht kg/ Stück	Artikel-Nr. für Vulkanisationsbezeichnung NR 55	Form- Nr.
50	35	70	130	5	100	_	8,5	0,360	3973 501	25081b AN
50	70	70	130	5	100	-	8,5	0,500	3973 502	25080 AN
100	45	120	200	10	160	50	13,0	1,935	3974 505	20299 AN
100	80	120	200	10	160	50	13,0	2,430	3974 506	24472 AN
120	45	150	250	10	200	60	15,0	2,900	3974 507	21422b AN
120	70	150	250	10	200	60	15,0	3,470	3974 508	21422 AN
150	50	200	300	15	250	80	17,0	6,150	3975 509	21055b AN
150	80	200	300	15	250	80	17,0	7,250	3975 510	21055 AN

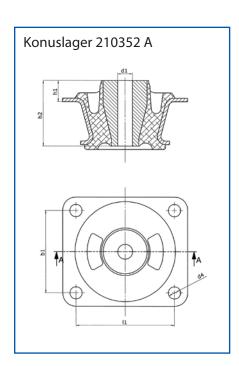
 $^{^{1)}}$ a_2 ohne Maßangabe bedeutet: nur 1 Bohrung mittig

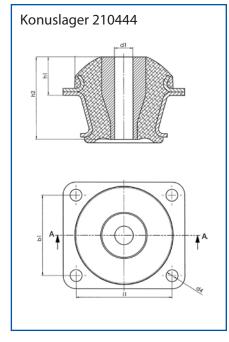
1.3 Schwingmetall®

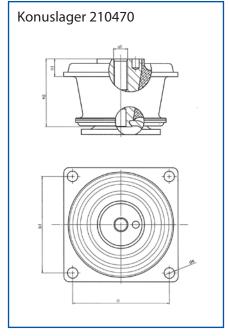
Parabel-Feder

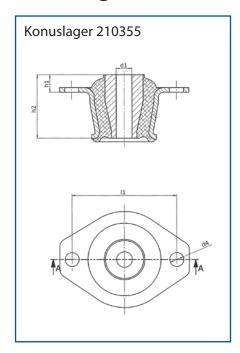

Abmessung und Kenndaten

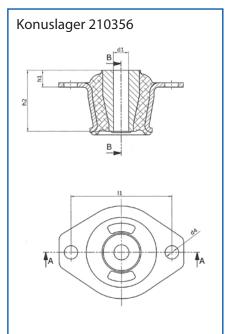

d [Ø mm]	h [mm]	l ₁ [mm]	g	Gewicht kg/Stück	Artikel-Nr. für Vulkanisationsbezeichnung NR 55	Form- Nr.
21	24	19,0	M 6	0,011	3915 236	58496
32	36	20,5	M 8	0,032	3915 235	58495
52	58	28,0	M 10	0,110	3915 237	58497
75	89	37,0	M 12	0,345	3915 238	58498
115	136	43,0	M 16	1,200	3915 234	58102
165	195	43,0	M 16	3,000	3915 239	58499




1.3 Schwingmetall®

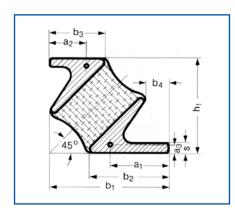

Konuslager





Konuslager

Abmessung und Kenndaten

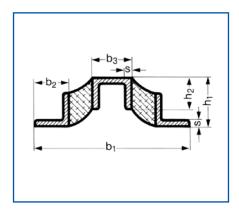

h ₁ [mm]	h ₂ [mm]	d ₁ [mm]	d ₄ [mm]	d₅ [mm]	b ₁ [mm]	I ₁ [mm]	Gewicht kg/Stück	Vulkar NR 65	Artikel-Nr. für nisationsbezeic NR 55		Form- Nr.
18	55,5	31,7	10,3	16	69,4	82,7	0,54	400000 4924	400000 4923	400000 4922	210089
18	55,5	31,7	10,3	16	69,4	82,7	0,73	400000 4927	400000 4926	400000 4925	210352
18	55,2	12,5	10,3	16	69,4	82,7	0,73	400000 4930	400000 4929	400000 4928	210352A
13	50,0	12,4	11,0	-	76,0	82,5	0,48	400000 4933	400000 4932	400000 4931	210355
13	50,0	12,4	11,0	-	-	82,5	0,47	400000 4936	400000 4935	400000 4934	210356
33	71,0	16,0	10,3	-	-	82,7	1,10	400000 4939	400000 4938	400000 4937	210444
20	77,0	M16	12,0	_	110,0	110,0	2,10	400000 4941	400000 4940	_*	210470

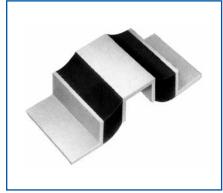
^{*} erhältlich in NR 75 (Artikel-Nr. 400000 4942)

1.3 Schwingmetall®

Schrägschiene

Abmessung und Kenndaten

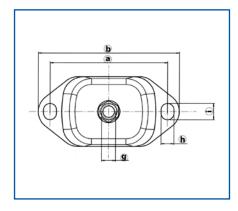

b ₁ [mm]	h ₁ [mm]	l [mm]	b ₂ [mm]	b ₃ [mm]	b ₄ [mm]	s [mm]	a ₁ [mm]	a ₂ [mm]	a ₃ [mm]	Gewicht kg/Stück	Artikel-Nr. für Vulkanisationsbezeichnung CR 55	Form- Nr.
108	80	75	76	48	28	10	53	25	10	1,56		38537
108	80	200	76	48	28	10	53	25	10	4,31	3978 702	38538
144	106	75	105	67	38	15	72	34	15	2,87	•	38539
144	106	200	105	67	38	15	72	34	15	8,05	3978 704	38540


 $[\]blacksquare$ Anfertigungsware

1.3 Schwingmetall®

U-Schiene

Abmessung und Kenndaten

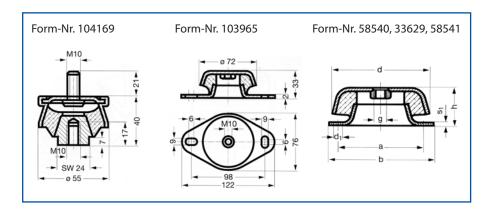

b ₁ [mm]	h ₁ [mm]	l [mm]	b ₂ [mm]	b ₃ [mm]	h ₂ [mm]	s [mm]	Gewicht kg/Stück	Vulkar NR 65	Artikel-Nr. für nisationsbezeid NR 55		Form- Nr.
110	34	25	25	27	22	4	0,127	3966 101	3966 201	3966 401	27847
110	34	50	25	27	22	4	0,278	3966 102	3966 202	3966 402	27753
110	34	75	25	27	22	4	0,418	3966 103	3966 203	3966 403	27788
110	34	2000	25	27	22	4	11,64	3966 104	3966 204	3966 404	20302

Dieser Artikel ist nicht mehr lieferbar.

1.3 Schwingmetall®

Topf-Element Serie C

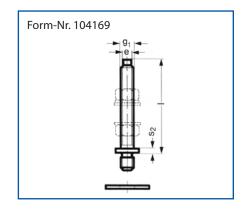
Abmessung und Kenndaten


a [mm]	f [mm]	h [mm]	i [mm]	g	Gewicht kg/Stück		Artikel-Nr. für nisationsbezeic NR 55		Form- Nr.
100	60	11	14	M 12	0,40	400000 4905	400000 4904	400000 4903	210620
140	75	20	13	M 16	0,95	400000 4908	400000 4907	400000 4906	210621
182	114	26	18	M 20	2,25	400000 4921	400000 4920	400000 4909	210622

1.3 Schwingmetall®

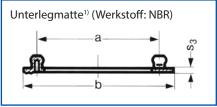
Topf-Element

Schwingmetall® Topf-Elemente werden in fünf Größen und drei Elastomer-Härten geliefert. Für Niveauregulierung und befestigungsloses Aufstellen der Größen 58540, 33629 und 58541 sind verschiedene Kombinationen lieferbar.



Abmessung und Kenndaten

b [Ø mm]	a [mm]	d [Ø mm]	d ₁ [Ø mm]	s ₁ [mm]	h [mm]	g	Gewicht kg/Stück		Artikel-Nr. füi isationsbezei NR 55		Form- Nr.
55	-	55	-	-	40	M 10	0,248	3956 112	3956 212	3956 412	104169
122	98	72	6	2	33	M 10	0,238	3956 110	3956 210	3956 410	103965
108	88	101	9	3	40	M 12	0,650	3956 106	3956 206	3956 406	58540
168	132	136	13	4	50	M 16	1,770	3956 105	3956 205	3956 405	33629
200	165	192	13	6	70	M 20	4,125	3956 107	3956 207	3956 407	58541

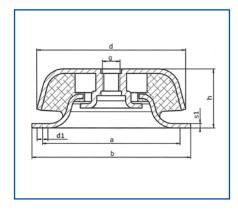

Zubehör

Abmessung und Kenndaten Nivellierspindel

s ₂ [Ø mm]	l [mm]	е	g ₁	Scheibe DIN 9021-St	Artikel- Nr.	Form- Nr.
5	85	SW 8	M 12	A 13 x 3	3956 026	(58540)
6	96	SW 10	M 16	A 17 x 3	3956 025	(33629)
6	106	SW 14	M 20	A 21 x 4	3956 027	(58541)

Mutter nach DIN 555, Scheiben nach DIN 125 und Federung nach DIN 127 sind handelsübliche Teile.

¹⁾ Vor Montage Noppen anfeuchten (Seifenwasser). Reibungswert μ = 0,7 (trockene Reibung)

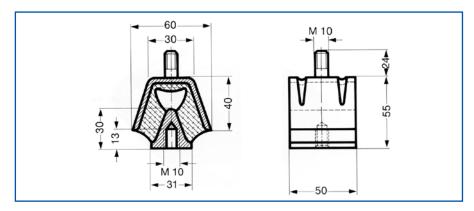

Abmessung und Kenndaten Unterlegmatte

s ₃ [Ø mm]	Artikel- Nr.	Form- Nr.
2,5	3956 016	(58540)
3,0	3956 015	(33629)
4,0	3956 017	(58541)

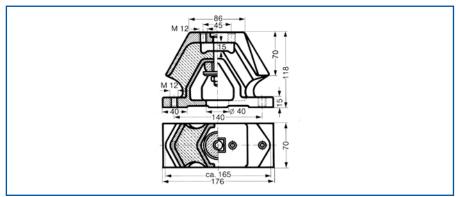
1.3 Schwingmetall®

Topf-Element mit Abreißsicherung

Abmessung und Kenndaten


b [mm]	a [mm]	d [Ø mm]	d ₁ [mm]	s ₁ [mm]	h [mm]	g	Gewicht kg/Stück		Artikel-Nr. für isationsbezeid NR 55		Form- Nr.
122	98	72	6	2	33	M 10	0,238	400000 5310	400000 5309	400000 5308	210641
108	88	101	9	3	40	M 12	0,650	400000 5313	400000 5312	400000 5311	210642
168	132	136	13	4	50	M 16	1,770	400000 5316	400000 5315	400000 5314	210643
200	165	192	13	6	70	M 20	4,125	400000 5319	400000 5318	400000 5317	210644

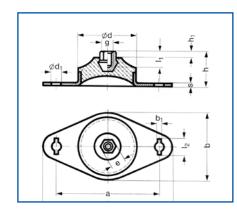
Dieser Artikel ist in den Breiten 122 mm und 200 mm nicht mehr lieferbar.



1.3 Schwingmetall®

Dach-Element

Abmessung und Kenndaten

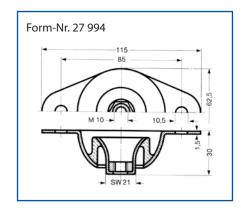

b [mm]	h [mm]	 [mm]	Gewicht kg/Stück	Vulka	Artikel-Nr. für nisationsbezeich	nung	Form- Nr.
[IIIIII]	[IIIIII]	[111111]	kg/Stuck	NR 65	NR 55	NR 40	
50	55	60	0,413	-	3946 208	-	38451
70	118	176	3,300	3946 109	3946 209	-	33660

www.whm.net 38 Änderungen vorbehalten

1.3 Schwingmetall®

Hut-Element

Abmessung und Kenndaten

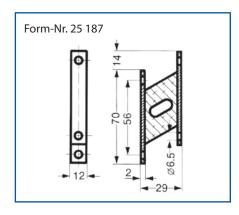

	b [mm]							l ₁ [mm]					Gewicht kg/Stück		rtikel-Nr. f ationsbezo NR 55		Form- Nr.
30	35	20	60	45	6	5	M 6	6	SW 11	1,5	2	10	0,025	3956 101	3956 201	3956 401	27860
45	50	32	90	70	9	8	M 10	16	SW 17	1,5	-	-	0,074	3956 102	3956 202	3956 402	27859
70	80	50	140	105	13	13	M 16	17	SW 24	2,0	3	19	0,250	3956 103	3956 203	3956 403	27924

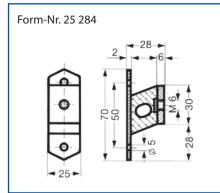
www.whm.net 39 Änderungen vorbehalten

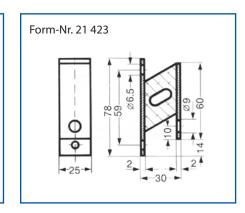
1.3 Schwingmetall®

Glocken-Element

Abmessung und Kenndaten

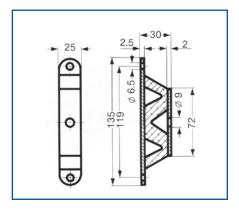

b	h [mm]	[]	Gewicht	Vulka	Artikel-Nr. für nisationsbezeicl	nnung	Form- Nr.
[mm]	[mm]	[mm]	kg/Stück	NR 65	NR 55	NR 40	
44,0	33	70	0,098	3956 108	3956 208	3956 408	58500
62,5	30	115	0,110	3956 104	3956 204	3956 404	27994


www.whm.net 40 Änderungen vorbehalten

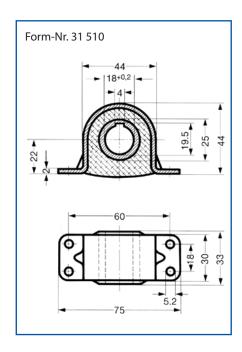


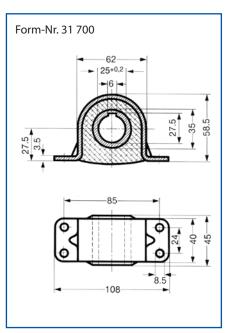
1.3 Schwingmetall®

Geräte-Element



Abmessung und Kenndaten

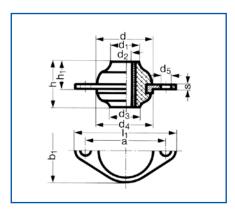

Gewicht kg/Stück	Vulka NR 65	Artikel-Nr. für nisationsbezeich NR 55	nnung NR 40	Form- Nr.
0,035	3946 103	3946 203	3946 403	25187
0,072	3946 101	3946 201	3946 401	25284
0,076	3946 104	3946 204	3946 404	21423
0,127	3946 106	3946 206	3946 406	24332


www.whm.net 41 Änderungen vorbehalten

1.3 Schwingmetall®

Bügel-Element

Abmessung und Kenndaten


Gewicht kg/Stück	Vulka	Artikel-Nr. für nisationsbezeicl	hnung	Form- Nr.
kg/Stuck	NR 65	NR 55	NR 40	
0,153	3936 101 001	3936 201 001	3936 401 001	31510
0,153	3936 102 001	3936 202 001	3936 402 001	31700

Änderungen vorbehalten 42

1.3 Schwingmetall®

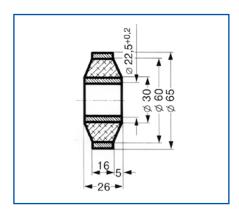
Flansch-Element

43

Abmessung und Kenndaten

d [mm]	h [mm]	l ₁ [mm]	d ₁ [mm]	d ₂ [mm]	d ₃ [mm]	d₄ [mm]	a [mm]	b ₁ [mm]	h ₁ [mm]	d ₅ [mm]	s [mm]	Gewicht kg/Stück	Artikel-Nr. für Vulkanisationsbezeichnung NR 45	Form- Nr.
33	29	58	15,5	8	15,5	-	45	34	21	6,3	6 ¹⁾	0,026		48684
47	40	90	23,0	12	22,0	-	70	48	28	9,0	81)	0,080		48685
68	54	117	33,0	16	37,0	65	94	71	33	9,0	5	0,395		48686
68	49	117	39,0	16	37,0	65	94	71	28	9,0	5	0,384		48687
68	44	117	52,0	16	48,0	65	94	71	21	9,0	5	0,380		48688
82	68	150	40,0	20	42,0	80	114	90	40	13,0	6	0,785		48689
82	62	150	49,0	20	42,0	80	114	90	34	13,0	6	0,768		48690
82	51	150	60,0	20	53,0	80	114	90	23	13,0	6	0,730		48691
96	82	174	45,0	20	47,0	95	138	108	46	13,0	8	1,570		48692
96	76	174	58,0	20	47,0	95	138	108	40	13,0	8	1,540		48693
96	68	174	62,0	20	63,0	95	138	108	29	13,0	8	1,490		48694

www.whm.net Änderungen vorbehalten


 $^{^{1)}}$ Kunststoff-Flansch \blacksquare Anfertigungsware

1.3 Schwingmetall®

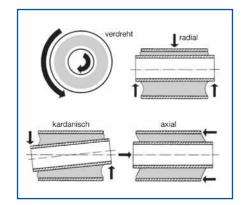
Ring-Element

Außenring vierteilig, Schlitzbreite 1,5 mm, Einbaumaß Ø 64 mm

Abmessung und Kenndaten

Gewicht kg/Stück	Vulka	Artikel-Nr. für nisationsbezeich	nnung	Form- Nr.
kg/Stuck	NR 65	NR 55	NR 40	
0,168	3926 102	3926 202	3926 402	21489

www.whm.net 44 Änderungen vorbehalten



1.4 MEGI®

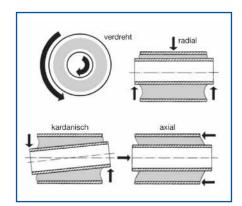
Megi-HL-Buchsen

Megi-HL-Buchsen können radial, axial und auf Verdrehung beansprucht werden, ohne dass sich der Gummi gegenüber den Metallteilen verschiebt. Eine geringe kardanische Auswinkelung der Achse des Innenrohres gegenüber der des Außenrohres bzw. umgekehrt ist möglich. Die Buchsen sind jedoch gegen Kardanik je nach Gummistärke, Gummihärte und Länge verhältnismäßig steif.

Aus der Tabelle gehen die im Dauerbetrieb und bei Spitzenbelastungen zulässigen radialen, axialen und Verdrehbeanspruchungen hervor. Sie gelten für eine hochelastische, besonders dauerhafte Gummiqualität in einer Härte von ca. 50 Shore A.

45

Abmessung und Kenndaten


				RADIALB	ELASTUNG	AXIALBI	ELASTUNG	VERDREHUNG					
Durch-	Innen- Durch- messer	der Innen-	Länge der Außen- buchse	zul. stat. Radial- last	radiale Feder- kon- stante	zul. stat. Axial- last	axiale Feder- kon- stante	zul. stat. Verdreh- winkel	zul. stat. Dreh- moment	Dreh- feder- kon- stante	zul. Spitzen- verdreh- winkel	zul. Spitzen- Dreh- moment	Artikel- Nr.
D [mm]	d [mm]	l [mm]	L [mm]	F _r [N]	C _r [N/mm]	F _a [N]	C _a [N/mm]	φ [Grad]	M _d [Nm]	Cφ [Nm/Grad]	φ max [Grad]	Md _{max} [Nm]	
22 ^{±0,08}	8 ^{H11}	16 ^{±0,2}	10+0,2	100	196	140	69	13	0,7	0,054	26	1,4	735 061
24+0,08	10 ^{H9}	17 ^{±0,1}	14+0,5	200	491	160	103	15	1,3	0,09	30	2,6	735 009 S2
26+0,08	12 ^{H9}	24 ^{±0,2}	17,5+0,2	690	1962	680	226	13	4,4	0,338	26	9,0	735 035
26+0,08	12 ^{H9}	36 ^{±0,2}	32+0,2	1370	3924	840	422	13	8,0	0,61	26	15,0	735 091
30 ^{±0,08}	13 ^{H9}	40-0,4	40 ^{-0,4}	1670	3335	_	392	15	9,0	0,6	30	18,0	735 059
30 ^{±0,08}	14 ^{±0,15}	76 ^{±0,1}	67 ^{±0,1}	3920	8829	2310	765	15	19,0	1,24	30	37,0	735 067
34 ^{±0,15}	18 ^{H11}	36+0,2	32+0,5	1570	3237	830	417	14	12,0	0,9	28	25,0	735 043
40 ^{±0,2}	26 ^{±0,2}	45 ^{±0,2}	40 ^{-0,2}	4910	14715	2550	1020	7	28,0	3,9	14	55,0	735 081
45+0,08	20 ^{H9}	62,5 ^{±0,2}	55 ^{-0,2}	3430	3924	1860	540	15	22,0	1,5	30	44,0	735 022 S1
45+0,08	20 ^{H9}	62,5 ^{±0,2}	59,5 ^{-0,2}	3920	4905	910	608	15	30,0	2,0	30	60,0	735 022
48-0,1	27,8 ^{H9}	67 ^{±0,2}	60 ^{±0,2}	8830	14715	3340	961	11	60,0	5,3	22	120,0	735 074
48-0,1	27,8 ^{H9}	73 ^{±0,2}	60 ^{±0,2}	8830	14715	6300	961	11	60,0	5,3	22	120,0	735 075
50 ^{±0,2}	25 ^{H9}	67,5 ^{±0,2}	65,5 ^{-0,2}	6380	6082	760	755	15	60,0	3,9	30	120,0	735 040
52 ^{±0,25}	25 ^{H9}	82,5 ^{±0,5}	77-0,2	8830	8829	2310	824	15	70,0	4,6	30	140,0	735 079
55+0,08	25 ^{H9}	93,5 ^{±0,2}	89,5-0,2	9810	8829	1650	824	15	70,0	4,6	30	140,0	735 023
55+0,08	30 ^{H11}	94 ^{±0,2}	89,5 ^{-0,2}	13730	16677	2600	1177	13	100,0	7,6	26	200,0	735 078
68 ^{h11}	25 ^{H9}	75 ^{±0,2}	48 ^{±0,1}	1960	981	4120	314	15	38,0	2,5	30	75,0	735 019

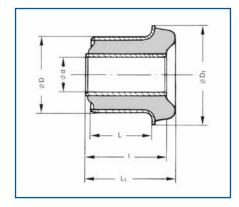
Megi-HL-Buchsen

Megi-HL-Buchsen können radial, axial und auf Verdrehung beansprucht werden, ohne dass sich der Gummi gegenüber den Metallteilen verschiebt. Eine geringe kardanische Auswinkelung der Achse des Innenrohres gegenüber der des Außenrohres bzw. umgekehrt ist möglich. Die Buchsen sind jedoch gegen Kardanik je nach Gummistärke, Gummihärte und Länge verhältnismäßig steif.

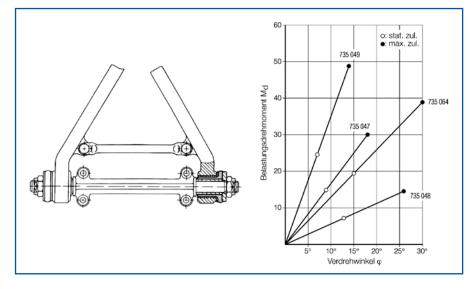
Aus der Tabelle gehen die im Dauerbetrieb und bei Spitzenbelastungen zulässigen radialen, axialen und Verdrehbeanspruchungen hervor. Sie gelten für eine hochelastische, besonders dauerhafte Gummiqualität in einer Härte von ca. 50 Shore A.

Abmessung und Kenndaten

Durch-	Innen- Durch- messer	der Innen-		zul. stat.	ELASTUNG radiale Feder- kon- stante	AXIALBE zul. stat. Axial- last	LASTUNC axiale Feder- kon- stante	zul. stat. Verdreh-	zul. stat. Dreh- moment	Dreh- feder- kon-	EHUNG zul. Spitzen- verdreh- winkel	zul. Spitzen- Dreh- moment	Artikel- Nr.
D [mm]	d [mm]	l [mm]	L [mm]	F _r N	C _r N/mm	F _a [N	C _a N/mm	φ Grad	M _d Nm	C φ Nm/Grad	φ max Grad	Md _{max} Nm	
70 ^{+0,7}	50+0,1	60 ^{±0,2}	60 ^{±0,2}	11770	19620	-	1511	6,5	140,0	21,1	13	270,0	735 039
75 ^{-0,5}	40+0,2	70 ^{±0,5}	57-0,5	5890	4611	4510	697	14	130,0	9,1	28	260,0	735 038
80 ^{+0,3}	35 ^{H9}	60 ^{-0,2}	50 ^{-0,2}	3430	2453	2500	500	15	93,0	6,2	30	190,0	735 087
80 ^{±0,35}	50 ^{H11}	37 ^{±0,2}	32-0,2	1960	1962	1230	491	11	120,0	10,7	22	240,0	735 084
80 ^{±0,35}	50 ^{H11}	100 ^{±0,2}	95 ^{-0,2}	14720	14715	3430	1373	11	260,0	23,2	22	510,0	735 083
85+0,5	36 ^{H9}	102 ^{±0,5}	85 ^{±0,1}	6870	2943	4910	598	15	120,0	7,8	30	240,0	735 077



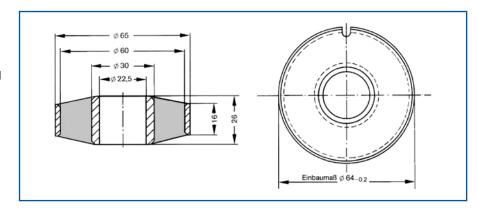
1.4 MEGI®


Megi-AS-Buchsen

Megi-AS-Buchsen sind nach dem gleichen Herstellungsverfahren gefertigt wie die Megi-HL-Buchsen und besitzen daher die gleichen Vorteile bezüglich Dauerfestigkeit und Beanspruchungsmöglichkeit. Darüber hinaus sind sie durch besondere Ausbildung der äußeren Metallbuchse auch in der Lage, größere axiale Kräfte ohne Überbeanspruchung des Gummis aufzunehmen. Aufgrund dieser Eigenschaft können sie vor allem dort eingesetzt werden, wo in Gelenken größere Kräfte in axialer Richtung auftreten, z. B. bei Dreieckslenkern (s. Abb.). Über die Federkonstante bei axialer Belastung können keine allgemein gültigen Angaben gemacht werden, da diese von den Einbauverhältnissen, insbesondere der Größe der axialen Vorspannung abhängt.

Aus der Tabelle gehen die im Dauerbetrieb und bei Spitzenbelastungen zulässigen Beanspruchungen hervor. Sie gelten für eine hochelastische, besonders dauerhafte Gummiqualität in einer Härte von ca. 50 Shore A.

Abmessung und Kenndaten


						RADIALB	ELASTUNG			VERDRE	HUNG		
Außen- Durch- messer	Innen- Durch- messer	Flansch- Durch- messer	Länge der geflan- schten Innen- buchse	Länge der Außen- buchse	Gesamt- länge der Buchse	zul. stat. Radial- last	radiale Feder- kon- stante	zul. stat. Verdreh- winkel	zul. stat. Dreh- moment	Dreh- feder- kon- stante	zul. Spitzen- verdreh- winkel	zul. Spitzen- Dreh- moment	Artikel- Nr.
D [mm]	d [mm]	D ₁ [mm]	l [mm]	L [mm]	L ₁ [mm]	F, [N]	C _r [N/mm]	φ [Grad]	M _d [Nm]	C φ [Nm/Grad]	φ max [Grad]	Md _{max} [Nm]	
30+0,2	14+0,1	41	34 ^{±0,25}	20+0,2	36	690	1373	13	7,5	0,6	26	15,0	735 048
34+0,2	19,5+0,1	46	40 ^{±0,25}	28+0,2	48	2060	5886	9	15,0	1,62	18	30,0	735 047
40+0,1	24+0,1	58	42 ^{±0,1}	30-0,5	45,5	3430	9810	7	24,0	3,4	14	48,0	735 049
42+0,08	19,5 ^{+0,1}	55	45 ^{±0,25}	33+0,2	49,5	1470	1570	15	19,0	1,3	30	39,0	735 064


1.4 MEGI®

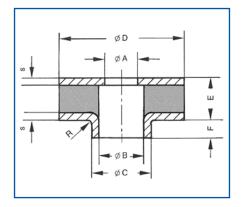
Megi-Ring Artikel-Nr. 785 000

Megi-Ringe können radial, axial und torsional belastet werden. Sie müssen unter radialer Vorspannung von 1 mm des Außendurchmessers eingebaut werden.

Verwend	lete Gummihärten:
hart	ca. 70 Shore A
mittel	ca. 60 Shore A
weich	ca. 45 Shore A

Kenndaten

			hart	mittel	weich
Zul. stat. Radiallast	F _r zul.	[N]	2200	1250	600
Radialfederkonstante	C _r	[N/mm]	980	545	260
Zul. stat. Axiallast	F _a zul.	[N]	1550	900	500
Axialfederkonstante	C _a	[N/mm]	260	150	80
Zul. stat. Drehmoment	M zul.	[Nm]	28,4	20,6	13,7
Drehfederkonstante	C_{ϕ}	[Nm/Grad]	1,7	1,22	0,82
Zul. Spitzendrehmoment	M_{max}	[Nm]	57	41	28


1.4 MEGI®

Megi-Ringpuffer

Megi-Ringpuffer sind ringförmige Gummimetallteile, bei denen die Zentrierung durch einen Kragen an einer der beiden Metallplatten erfolgt. Megi-Ringpuffer können auf Druck und Schub beansprucht werden.

Megi-Ringpuffer werden paarweise gegeneinander vorgespannt verwendet für elastische Lagerungen, bei denen Zugkräfte auftreten.

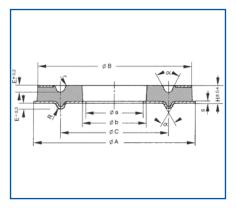
Verwendete Gummihärten:						
hart	ca. 70 Shore A					
mittel	ca. 60 Shore A					
weich	ca. 45 Shore A					

49

Abmessung und Kenndaten

										DRUCKBEANSPRUCHUNG					SCHU	JBBEAN	ISPRUC	HUNG			
D	Δ	B**	ر	F	·	G	s	R	Feder	ate c _z in	N/mm	Zul. Bel	astung F	_{zul.} * in N	Federr	ate c _{x,y} ir	N/mm	Zul. Bel	astung F	_{zul.} * in N	Artikel-
_	[mm]		[mm]	[mm]		_			hart	mittel	weich	hart	mittel	weich	hart	mittel	weich	hart	mittel	weich	Nr.
36	6,2	-	15	10	6	-	1	1	2000	1350	800	2600	1600	950	170	110	65	500	300	180	741 029
36	8,5	12	18	10	4	-	1	1	1550	1000	620	1900	1200	700	150	100	60	400	250	150	741 027
36	16,6	-	20	8	3	-	1	1	1900	1250	770	1800	1100	650	175	115	70	300	200	120	741 092
50	16,5	20	23	13	9,5	-	1,5	2,5	2200	1500	900	3700	2300	1350	225	150	90	800	500	300	741 020
60	20,5	24	27	13	10,5	-	1,5	2,5	3000	2000	1050	6100	3800	2200	325	220	130	1100	700	410	741 026

^{*} F_{zul} ist die zulässige statische Dauerbelastung, der eine dynamische Wechsellast überlagert werden kann. Die angegebenen zulässigen Belastungen stellen nur ungefähre Richtwerte für die statische Belastung dar.


^{**} Innendurchmesser (Maß B) der Artikel 741 027/029/092 ist gummibeschichtet.

1.4 MEGI®

Megiflex®-Scheiben

Die Megiflex-Scheiben werden bei der Montage vorgespannt und nehmen Zugund Druckkräft auf. Bei Federpaketen mit vielen Einzelelementen müssen Knickstützen eingesetzt werden. Die Hintereinanderschaltung der Federelemente soll so berechnet sein, dass eine Belastung über den Vorspannbereich hinaus nicht vorkommt. Querkräfte können nicht oder nur in ganz geringem Maße aufgenommen werden. Aufnahmeplatten werden vom Kunden erstellt.

50

Abmessung und Kenndaten

											stati	ul. ische erlast	auftre	ten tende nlast*	
A ø [mm]	a ø [mm]	Bø [mm]	bø [mm]	C ø [mm]	H [mm]	s [mm]	E [mm]	α°	R [mm]	r [mm]	N	s [mm]	N	s [mm]	Artikel- Nr.
65	26	62	30	46	11	1	2,5	60	2	0,5	6850	1,8	17650	3,6	741 473
95	45	90	50	70	10,5	1,5	2,5	60	2,5	1	7850	1,4	20600	2,8	741 481
100	35	90	40	64	27,5	1,5	3,5	60	3	1	9800	6,4	58850	13	741 444
110	30	102	38	76	20,8	1,75	3,5	60	3	1	13750	3,7	62800	7,4	741 401
110	30	102	38	76	25,8	1,75	3,5	60	3	1	12750	5,1	73600	10,2	741 490
110	40	102	44	76	15,8	1,75	3,5	60	3	1	14200	2,4	49050	5	741 493
130	55	123	60	90	16	2	5	60	4	2	17150	2,1	57900	4,2	741 488
153	55	145	60	102	16	2	5	60	4	2	27950	1,9	88300	3,9	741 433
153	55	145	60	102	30	2	5	60	4	2	29450	6,2	107900	12,2	741 472
155	75	150	80	115	12	2	5	60	4	2	23550	1,2	73600	2,5	741 485
160	90	155	95	125	12	2	5	60	4	2	22550	1,3	66700	2,7	741 486
164	60	156	64	110	16	2	4	60	4	2	30400	1,8	88300	3,6	741 424
164	60	156	64	110	23	2	4	60	4	2	33350	3,6	122650	7,2	741 432
210	55	200	60	154	20	2	6	60	6	1,2	45150	2	153050	4	741 482
210	95	200	100	154	20	2	6	60	6	1,2	45150	2,6	173650	5,3	741 436
220	66	200	100	154	62	2	6	60	6	1,2	32400	13	103000	26	741 407
240	70	230	76	154	25	2	6	60	5	2	60800	2,9	217800	5,9	741 434
265	78	250	90	166	27,8	2,75	7	60	6	2	82400	3,2	276650	6,4	741 427
320	154	310	160	235	18	3	7	100	6	2	56900	1,4	196200	2,8	741 483

^{*} Dies sind theoretische Richtwerte, welche auf Grund ihrer Lage im "progressiven" Bereich der Kennung starken Schwankungen unterliegen.

Produktbeschreibungen

OSM-Serie

Die OSM-Maschinenschuh-Serie ist für den Gebrauch bei Maschinen entwickelt worden, die keine Bodenbefestigung benötigen und keiner Schwingungs- oder Schalldämpfung bedürfen. Sie sind mit der Hilfe von FEM-Analysen konzipiert worden, um Ermüdungserscheinungen durch schnelle Arbeitszyklenzeiten und starke seitliche Kräfte schwerer Maschinen zu verhindern.

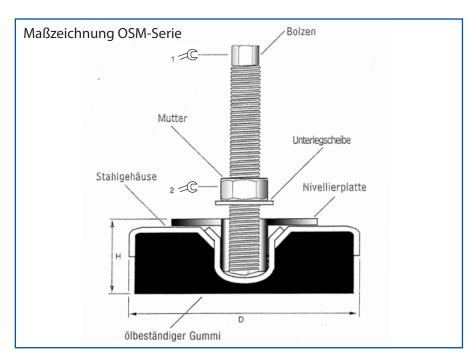
Die verstärkte, nivellierbare Stutzkappe der Bolzen verteilt die Maschinenbelastung auf den Maschinenschuh. Die Nivellierung ergibt eine direkte und zuverlässige Maschinenbefestigung, die die meisten Befestigungsbedürfnisse erfüllen.

Vertikale sowie horizontale Kräfte werden durch die integrierte Nitrilmatte aus ölresistentem Gummi gedämpft. Eine wohlgeprüfte und angewandte Konstruktion mit sehr guten Charakteristika macht die OSM-Serie zu der richtigen Wahl für die meisten Maschinen in der Industrie.

www.whm.net

51

Vorteile

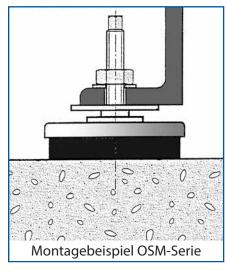

- ⇒ Gediegene und geprüfte Konstruktion
- ⇒ Schnelle und einfache Installation
- ⇒ Ausgezeichnete nivellierende Eigenschaften
- ⇒ Hohe Vibrationsdämpfung
- Schalldämpfend
- ⇒ Belastung bis 5.500 kg

Änderungen vorbehalten

OSM-Serie

Standard:

Die OSM-Serie wird mit einer Mutter und zwei Beilagscheiben geliefert.

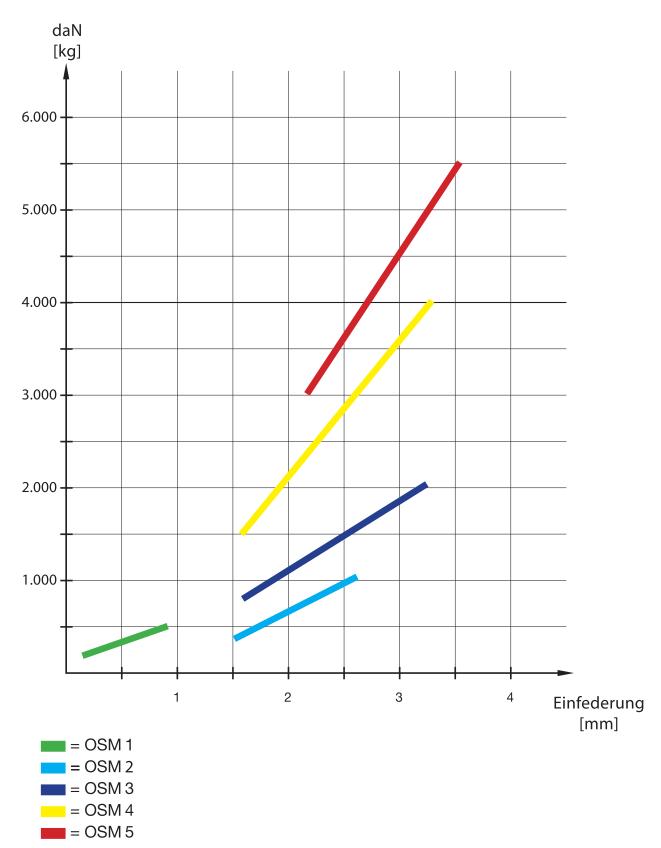

Zubehör:

Stahlplatten, andere Bolzenlängen, Gewindeadaptoren

Modell	Belastung, daN (kg)	Höhe, H min., mm	Ø, D mm	₩ mm	₩ mm	Gewinde
OSM 1	50-500	38	80	9	19	M12 x 1,25 x 120
OSM 2	400-1.000	46	120	12	24	M16 x 1,50 x 120
OSM 3	800-2.000	53	160	15	30	M20 x 1,50 x 170
OSM 4	1.500-4.000	54	160	15	30	M20 x 1,50 x 170
OSM 5	3.000-5.500	56	200	15	30	M20 x 1,50 x 170

Anwendungen

- **⇒** Bandsägen
- **⊃** Pressen
- **⇒** Bohrmaschinen
- **⇒** Werkstattmaschinen
- **⇒** Schleifmaschinen
- **⇒** Drehmaschinen
- ⇒ Fräsmaschinen
- **⇒** Verpackungsmaschinen
- **⇒** Formmaschinen
- **⊃** Druckmaschinen
- **⇒** Stanzen



52

Produktbeschreibungen

OSM-Serie

www.whm.net Änderungen vorbehalten

53

Produktbeschreibungen

MHD-Serie Präzisionsnivellierung

Die Maschinenschuhe der MHD-Serie sind ideal für Maschinen, die großen horizontalen und vertikalen Kräften ausgesetzt werden und bei denen eine sichere Verbindung zwischen Boden und Maschine ein Muss ist. Eine einzigartige Konstruktion macht es möglich, dass der MHD-Schuh Stöße, z. B. von Spritzgussmaschinen, absorbiert, um verbesserte Wirtschaftlichkeit zu erreichen. Die Maschinenschuhe absorbieren Stöße in Hochgeschwindigkeitsmaschinen, bei denen das Dämpfungsmaterial eine entscheidende Rolle spielt.

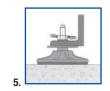
Der MHD-Maschinenschuh besteht aus folgenden Komponenten: Stoßaufnehmendes Bodengehäuse, Druckplatte, Druckzylinder und integrierte Einstellschraube mit Kontermutter und Unterlegscheibe. Diese Konstruktion garantiert einen Präzisionsausgleich bis zu 1/100 mm über den ganzen Ausgleichsbereich ohne die Eigenfrequenz zu verändern. Zusätzlich vermeidet eine integrierte Verriegelungsvorrichtung, dass der MHD-Schuh während der Installation oder einer Versetzung der Maschinen auseinanderfällt. Die Dämpfungseinheit in Nitrilgummi ist genauestens konstruiert, um statische und dynamische Lasten zu tragen. Sie

Vorteile

- ⇒ Ausgezeichnete dynamische Stabilität
- → Reduzierte Gesamthöhe
- ⇒ Bis zu 27 mm Ausgleichsbereich
- ⇒ Effektive Schwingungsdämpfung
- ⇒ Einfache Installation und Montage
- → Minimale seitliche Schwingungen
- ⇒ Erlaubt feine Höheneinstellungen unter voller Last
- ⇒ Belastung bis 5.500 kg

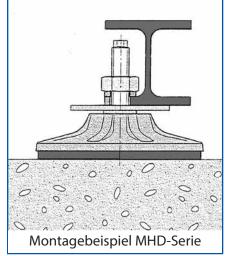
hat eine spezielle Steifheit zur Minimierung von Maschinenschwingungen. Das Material in der Dämpfungseinheit kann über Dicke und Oberflächenprofil so angepasst werden, dass es spezifischen Konstruktionsbedürfnissen entspricht. Außerdem können sphärische Unterlegscheiben als Extrazubehör für rauhe Oberflächen und Böden verwendet werden.

54


Montagebeispiel, Schritt für Schritt MHD-Serie



MHD-Serie



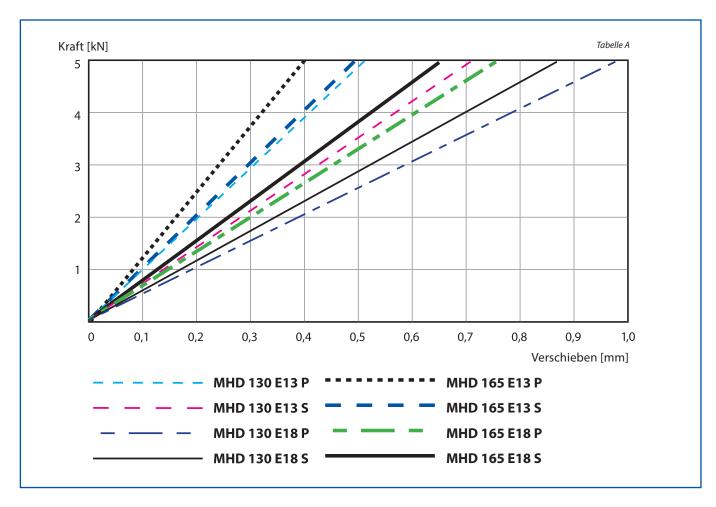
Anwendungen

- **⇒** Formgussmaschinen
- **⊃** Extruder
- **⇒** Mahlmaschinen
- **⇒** Schleifmaschinen
- **⇒** Spritzgussmaschinen
- **⇒** Werkzeugmaschinen
- → Messmaschinen
- **⇒** Fräsmaschinen

Standard: Die MHD-Serie wird mit Mutter und Beilagscheiben geliefert.

Modell	Belastung, daN [kg]	Höhe, H [mm]	Ø, D [mm]	∕©1 [mm]	©2 [mm]	Gewinde
MHD 130	500-1.500	60-78	140	12	24	M 16 x 1,50 x 150
MHD 165	900-2.700	60-84	174	15	30	M 20 x 1,50 x 150
MHD 190	1.500-4.000	60-84	198	15	30	M 20 x 1,50 x 150
MHD 240	2.300-5.500	80-107	245	17	36	M 24 x 2,00 x 150

55


www.whm.net Änderungen vorbehalten

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 130 E13, P*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	96	117	139
Dyn. Kompr. Modul, Ecd [N/mm²]	94	115	136

2. Stat. Parameter

Belastete Fläche, BF [mm²]	13.270
Unbelastete Fläche, UF [mm²]	13.270
Formfaktor, S	1
Stat. Federkonstante Ks [N/mm]	25.100
Stat. Kompr. Modul, Ecs [N/mm²]	26

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	10
Dyn. Kompr. Modul [N/mm²]	10

*P mit Profil, S ohne Profil www.whm.net Änderungen vorbehalten

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 130 E13, S*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	105	134	148
Dyn. Kompr. Modul, Ecd [N/mm²]	103	131	145

2. Stat. Parameter

13.270
5.300
2,50
94.700
93

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	7
Dyn. Kompr. Modul [N/mm²]	6

Änderungen vorbehalten *P mit Profil, S ohne Profil

www.whm.net 57

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 130 E18, P*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	67	69	96
Dyn. Kompr. Modul, Ecd [N/mm²]	91	93	131

2. Stat. Parameter

Belastete Fläche, BF [mm²]	13.270
Unbelastete Fläche, UF [mm²]	15.300
Formfaktor, S	0,87
Stat. Federkonstante Ks [N/mm]	16.600
Stat. Kompr. Modul, Ecs [N/mm²]	23

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	5
Dyn. Kompr. Modul [N/mm²]	6

Änderungen vorbehalten *P mit Profil, S ohne Profil

*Www.whm.net 58

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 130 E18, S*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	84	105	104
Dyn. Kompr. Modul, Ecd [N/mm²]	114	143	141

2. Stat. Parameter

Belastete Fläche, BF [mm²]	13.270
Unbelastete Fläche, UF [mm²]	7.350
Formfaktor, S	1,80
Stat. Federkonstante Ks [N/mm]	40.000
Stat. Kompr. Modul, Ecs [N/mm²]	54

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	5
Dyn. Kompr. Modul [N/mm²]	7

Änderungen vorbehalten *P mit Profil, S ohne Profil

*Www.whm.net 59

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 165 E13, P*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	102	111	129
Dyn. Kompr. Modul, Ecd [N/mm²]	71	78	89

2. Stat. Parameter

Belastete Fläche, BF [mm²]	19.080
Unbelastete Fläche, UF [mm²]	20.390
Formfaktor, S	0,94
Stat. Federkonstante Ks [N/mm]	35.400
Stat. Kompr. Modul, Ecs [N/mm²]	24

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	12
Dyn. Kompr. Modul [N/mm²]	8

Änderungen vorbehalten ** P mit Profil, S ohne Profil

**Www.whm.net 60

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 165 E13, S*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	97	122	136
Dyn. Kompr. Modul, Ecd [N/mm ²]	67	84	94

2. Stat. Parameter

Belastete Fläche, BF [mm²]	19.080
Unbelastete Fläche, UF [mm²]	8.940
Formfaktor, S	2,13
Stat. Federkonstante Ks [N/mm]	104.000
Stat. Kompr. Modul, Ecs [N/mm²]	71

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	10
Dyn. Kompr. Modul [N/mm²]	7

Änderungen vorbehalten *P mit Profil, S ohne Profil

*Www.whm.net 61

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 130 E18, P*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	64	111	100
Dyn. Kompr. Modul, Ecd [N/mm²]	61	106	95

2. Stat. Parameter

Belastete Fläche, BF [mm²]	19.080
Unbelastete Fläche, UF [mm²]	23.875
Formfaktor, S	0,80
Stat. Federkonstante Ks [N/mm]	22.300
Stat. Kompr. Modul, Ecs [N/mm²]	21

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	6
Dyn. Kompr. Modul [N/mm²]	6

Änderungen vorbehalten ** P mit Profil, S ohne Profil

**Www.whm.net 62

Produktbeschreibungen

Maschinenschuhe MHD: Werkstoffeigenschaften und technische Daten

MHD 165 E18, S*

1. Frequenz 0,1 Hz

Belastung	kN 10	kN 20	kN 30
Dyn. Federkonstante, Kd [kN/mm]	72	107	97
Dyn. Kompr. Modul, Ecd [N/mm²]	69	102	92

2. Stat. Parameter

Belastete Fläche, BF [mm²]	19.080
Unbelastete Fläche, UF [mm²]	12.430
Formfaktor, S	1,53
Stat. Federkonstante Ks [N/mm]	45.400
Stat. Kompr. Modul, Ecs [N/mm²]	43

3. Diagramm A: Dyn. Schubkonstante

Federlänge (Amplitude) als Funktion der dyn. Stoßkraft. Frequenz 0,1 Hz, vertikale Belastung 20 kN, dyn. horiz. Belastung 5 kN.

Dyn. Federkonstante [kN/mm]	7
Dyn. Kompr. Modul [N/mm²]	6

Änderungen vorbehalten *P mit Profil, S ohne Profil

*Www.whm.net 63

Produktbeschreibungen

Berechnungsbeispiel: Einfederungen

Maschinenschuh MHD 130

Dämpfungsmaterial:	
Type E	90 IRHD
Materialdicke	13 mm
Young-Konstante E _O gemäß Diagramm	ca. 10 N/mm²
K (Korrekturfaktor für Berech. Kompr. Modul)	0,52

Berechnung der Einfederung "X", Berechnung des Formfaktors "S":

S = Belastete Fläche / Freie Fläche =

Belastete Fläche: $r^2 \times \pi = 13.300 \text{ mm}^2$

Freie Fläche: $2 \times r \times \pi \times H = 5.300 \text{ mm}^2 (S_0)$

Für Dämpfungsmatte mit Waffelprofil einseitig: (S_W)

Für Dämpfungsmatte ohne Waffelprofil: (S_O)

Freie Fläche + 0,6 x Belastete Fläche

 $= 5.300 + 0.6 \times 13.300 = 13.300 \text{ mm}^2 (S_W)$

 $S_W = 13.300 / 13.300 = 1$ $S_O = 13.300 / 5.300 = 2,5$

 $Ecs = E_O (1 + 2 \times K \times S^2)$

Ecs = Stat. Kompressionsmodul (N/mm^2)

F = Belastung(N)

X = Kompression (mm)

H = Dämpfungsmatte Dicke (mm)

A = Belastete Fläche (mm²)

KS = Stat. Federkonstante (N/mm)

Berechnung von Ecs:

Ecs w = $10(1 + 2 \times 0.52 \times 1^{2}) = 20 \text{ N/mm}^{2}$

Ecs o = $10 (1 + 2 \times 0.52 \times 2.5^2) = 75 \text{ N/mm}^2$

 $KS w = A \times Ecs/H$

 $= 13.300 \times 20 / 13 = 20.500 \text{ N/mm}$

 $KSo = A \times Ecs/H$

 $= 13.300 \times 75 / 13 = 76.700 \text{ N/mm}$

Berechnung der Kompression "X":

X = F/KS

Beispiel:

F = 5.000 N

X w = 5.000 / 20.500 = 0,24 mm

>>> in % = 1,8

X o = 5.000 / 76.700 = 0,065 mm

>>> in % = 0,05

Beispiel:

F = 10.000 N

X w = 10.000 / 20.500 = 0.49 mm

>>> in % = 3,8

X o = 10.000 / 76.700 = 0,13 mm

>>> in % = 1,0

www.whm.net

Produktbeschreibungen

Parameter: MHD 190, MHD 240

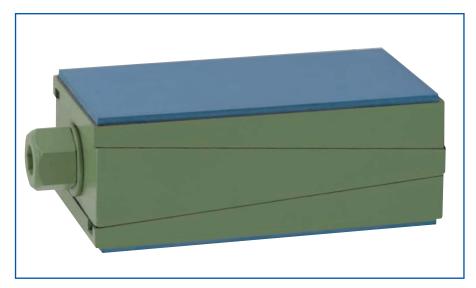
Modell	Belastete Fläche, BF	Unbelastete Fläche, UF	Formfaktor, S	Stat. Feder- konstante, Ks	Stat. Kompr. Modul, Ecs
MHD 190 E13, P	26.050 mm ²	25.600 mm ²	1,02	52.300 N/mm	26 kN/mm²
MHD 190 E13, S	26.050 mm ²	9.960 mm ²	2,62	202.000 N/mm	101 kN/mm²
MHD 190 E18, P	26.050 mm ²	29.470 mm ²	0,88	32.900 N/mm	23 kN/mm²
MHD 190 E18, S	26.050 mm ²	9.960 mm ²	1,89	84.700 N/mm	58 kN/mm²
MHD 240 E13, P	42.000 mm ²	37.610 mm ²	1,12	93.000 N/mm	29 kN/mm²
MHD 240 E13, S	42.000 mm ²	12.410 mm ²	3,38	514.000 N/mm	159 kN/mm²

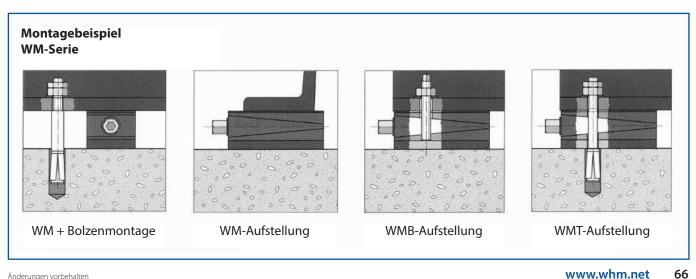
www.whm.net Änderungen vorbehalten

Produktbeschreibungen

WM-Serie

Die WM-Serie für Maschinenschuhe wurde speziell für die Installation und Nivellierung sehr schwerer Maschinen entworfen, die in der Spritzgussmaschinen- und graphischen Industrie verwendet werden.


Das WM-System besteht aus einem hochpräzisen nivellierenden Keil, der durch einen einfachen Zieh- und Drück-Prozess eine Höheneinstellung mit einer Genauigkeit bis zu 1/100 mm erlaubt.

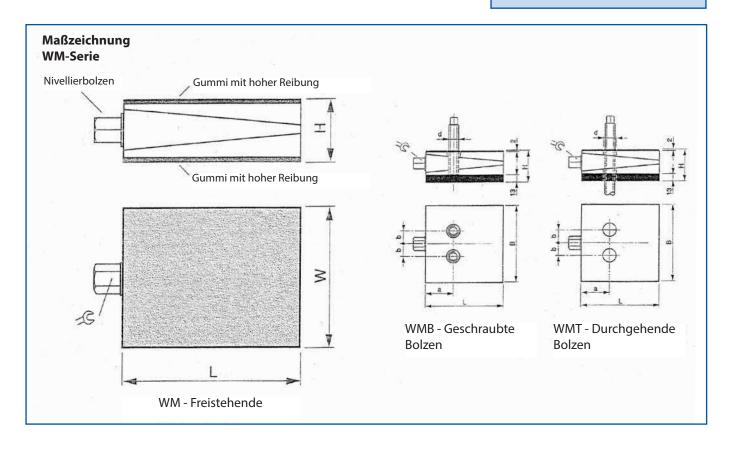

Sowohl die Ober- als auch die Unterseite des Schuhs sind mit einer 2 mm dicken Schicht aus Hochleistungsgummi versehen, der den meisten Fetten, Säuren, Ölen und Kühlflüssigkeitsmitteln, die normalerweise bei industriellen Anwendungen verwendet werden, widersteht.

Die WM-Serie eignet sich besonders bei verschiedenen Typen von Prozessmaschinen, Spritzgussmaschinen, Pressen, Stanzen und Produktionslinien. Darüber hinaus kann die WM-Serie auch als Extrastütze bei langen Maschinenbetten verwendet werden. Sie funktioniert gleichermaßen gut bei freistehenden und im Boden verankerten Maschinen.

Vorteile

- ⇒ Präzise Nivellierung
- ⇒ Verlässliche und sichere Verbindung zur Maschine
- ⇒ Flexible Höheneinstellung
- ⇒ Einsetzbar für freistehende und verankerte Maschinen
- ⇒ Sichere Verankerung für die Befestigung am Boden
- ⇒ Belastung bis 6.500 kg

www.whm.net Änderungen vorbehalten



WM-Serie

Modell	Belastung, daN [kg]	Höhe, H [mm]	Länge, L [mm]	Breite, W [mm]	(mm)
WM 10	850	36-44	105	55	13
WM 20	1.800	39-49	150	75	19
WM 30	3.500	45-55	200	95	22
WM 40	6.500	44-56	200	200	22

Anwendungen

- ⇒ Allg. Mehrzweckmaschinen mit langen Maschinenbetten
- **⊃** Druckmaschinen
- **⇒** Schnellläufer
- **⇒** Spritzgussmaschinen
- Werkzeugmaschinen
- **⊃** Druckpressen
- **⇒** Kunststoff-Produktions-Maschinen
- **⇒** Pressen
- **⇒** Stanzmaschinen

www.whm.net 67 Änderungen vorbehalten

Produktbeschreibungen

2100/4100 AM-Serie

Die Maschinenschuhe der 2100/4100 AM-Serie sind ideal für den Gebrauch in der Lebensmittel- und chemischen Verarbeitung, wie auch in anderen Anwendungsgebieten, in denen die Isolation von Schwingungen und die Nivellierung ein Anliegen ist. Edelstahl-Maschinenschuhe haben keine verborgenen Taschen, in denen sich Schmutz und Feuchtigkeit sammeln kann. Das macht sie ideal für Anwendungen, bei denen die Ausrüstung ständig gereinigt wird oder Korrosion ein Problem sein könnte. Alle Modelle sind auch in verzinktem Stahl für Umgebungen erhältlich, in denen Korrosion keine Rolle spielt, jedoch ein hoher Standard der Isolation von Schwingungen notwendig ist.

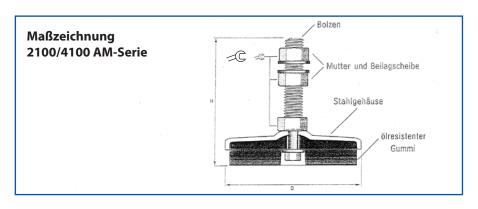
Anwendungen

- Montageausrüstungen
- Chemische Produktionsmaschinen
- ⇒ Förderbänder
- ⇒ Verpackungsmaschinen für Lebensmittel und Getränke
- Medizinische Produktionsausrüstungen

Vorteile

- Korrosionsbeständig
- ⇒ Schwenkbar bis zu 7° für zusätzliche Flexibilität
- ⇒ Erhältlich in vielen Variationen für jeden Einsatz
- → Hochqualitative Materialien; Nichtmagnetischer 304 Edelstahl
- ⇒ Gelenkbolzen für schräge Böden

68


⇒ Belastung bis 2.000 kg

2100/4100 AM-Serie

Standard: Die 2100/4100 AM-Serie wird mit Mutter und Beilagscheiben geliefert.

Modell	Belastung, daN [kg]	Höhe, H [mm]	Ø, D [mm]	Gewinde	(mm)	ArtNr. rostfrei	ArtNr. verzinkt
2100	50-150	125	68	M 10 x 1,50 x 100	17	10521	10525
2100	50-150	146	68	M 12 x 1,75 x 120	19	10523	10553
2100	50-150	148	68	M 16 x 2,00 x 120	24	10545	10555
2100	50-150	151	68	M 20 x 2,50 x 120	30	10547	10557
2200	100-250	125	68	M 10 x 1,50 x 100	17	10522	10526
2200	100-250	146	68	M 12 x 1,75 x 120	19	10524	10554
2200	100-250	148	68	M 16 x 2,00 x 120	24	10546	10556
2200	100-250	151	68	M 20 x 2,50 x 120	30	10548	10558
3100	50-500	158	98	M 12 x 1,75 x 120	19	10531	10535
3100	50-500	158	98	M 16 x 2,00 x 120	24	10533	10538
3100	50-500	158	98	M 20 x 2,50 x 120	30	10565	10575
3100	50-500	191	98	M 24 x 3,00 x 150	36	10567	10577
3200	450-1.000	158	98	M 12 x 1,75 x 120	19	10532	10536
3200	450-1.000	158	98	M 16 x 2,00 x 120	24	10534	10539
3200	450-1.000	158	98	M 20 x 2,50 x 120	30	10566	10576
3200	450-1.000	191	98	M 24 x 3,00 x 150	36	10568	10578
4100	900-1.500	169	140	M 12 x 1,75 x 120	19	10620	10640
4100	900-1.500	169	140	M 16 x 2,00 x 120	24	10621	10641
4100	900-1.500	169	140	M 20 x 2,50 x 120	30	10622	10642
4100	900-1.500	202	140	M 24 x 3,00 x 150	36	10623	10643
4200	1.400-2.000	169	140	M 12 x 1,75 x 120	19	10630	10650
4200	1.400-2.000	169	140	M 16 x 2,00 x 120	24	10631	10651
4200	1.400-2.000	169	140	M 20 x 2,50 x 120	30	10632	10652
4200	1.400-2.000	202	140	M 24 x 3,00 x 150	36	10633	10653

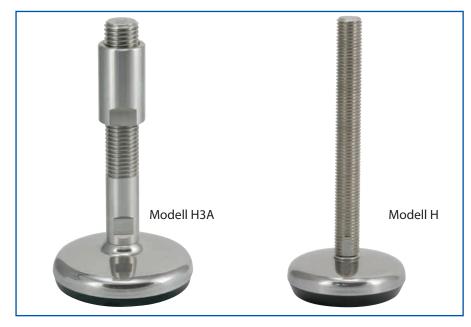
www.whm.net Änderungen vorbehalten

Produktbeschreibungen

H/H3A-Serie

Diese Maschinenschuhe aus hygienischem, rostfreien Stahl erfüllen alle FDAund USDA- Anforderungen für Geräte in der Herstellung von Lebensmitteln und Pharmazeutika. Ein Spezialgummi, an die Innenseite des Gehäuses vulkanisiert, sorgt für eine vollkommen hygienische Abdichtung. Zusätzlich besitzt der AISI 304 Edelstahl eine hohe Resistenz gegen Korrosion. Der volle Bewegungsbereich, ausgehend von 10° Schrägstellung, sichert einen festen Halt und komplette Kontrolle der Schwingungen. Die Modelle sind in FDA zertifizierten Versionen lieferbar, mit oder ohne Gewindehülse für maximale Gewindeeinstellung. Beide Versionen sind außerdem in AISI 316SS-Ausführung lieferbar, für aggressiv-korrosive Umgebungen. Alternative Ausführungen enthalten Verankerungslöcher für eine sichere Befestigung am Boden.

Anwendungen


- → Molkereimaschinen
- ⇒ Lebensmittel- und pharmazeutische Prozessausrüstung
- → Medizinische Ausrüstung
- Verpackungsmaschinen
- ⇒ 3A Design-Prozessausrüstung für Fleisch und Geflügel

Vorteile

- ⇒ 304 SS für hohe chemische Beständigkeit
- ⇒ Breiter Temperaturbereich: -20° bis +100°C
- ⇒ 10° Schwenkbarkeit für hohe Stabilität
- → Gewindehülse schließt Kontaminationen aus

Montagebeispiel

⇒ Gewindehülse funktioniert auch als Kontermutter

H/H3A-Serie

Produktbeschreibung

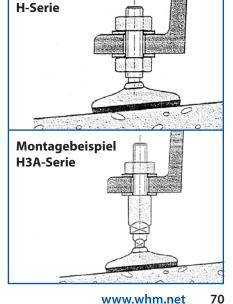
- Polierter rostfreier Stahl
- Hygienische Konstruktion
- Vibrationsabsorbierend mit Anti-Rutsch-Gummi
- USDA-zertifiziert für die Lebensmittelindustrie (H3A)
- Gewinde verschlossen (H3A)

Produktmaterial

Fuß DIN 59382: AISI 304 (Standard) AISI 316 (auf Anfrage)

Gummi

Lebensmittelzertifiziert und beständig gegen Reinigungsmittel

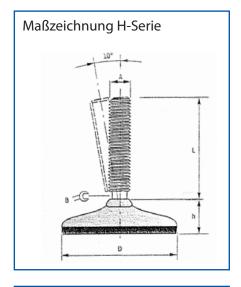

NBR 75 Shore A, schwarz (Standard)

Weißer Gummi auf Anfrage

Temperaturbereich: -20°C bis +100°C

Bolzen DIN 1013:

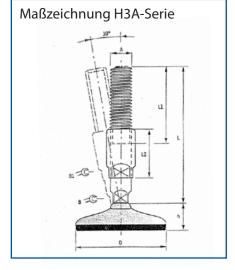
AISI 304 (Standard) AISI 316 (auf Anfrage)



H/H3A-Serie

Fuß	Ø D [mm]	Höhe h [mm]	Belas- tung, daN [kg]
H60	60	31	500
H80	80	33	1.000
H100	100	34	1.500
H120	120	38	2.500
H140	140	44	3.500

Gewinde- bolzen	Länge L, 100 mm	Länge L, 150 mm	₩ B [mm]
Α	M 12	M 12	10
Α	M 16	M 16	13
Α	M 20	M 20	15
Α	M 24	M 24	19
Α	M 30	M 30	24
Α	M 36	M 36	30
Α	M 42	M 42	36



Bestellbeispiel:					
Н	80	12	100		
				H	
Тур				H	
H-Serie				L	

Gewindelänge
Gewinde Ø
Fußdurchmesse

Basis- einheit	Ø D [mm]	Höhe h [mm]	Belas- tung, daN [kg]
H60	60	31	500
H80	80	33	1.000
H100	100	34	1.500
H120	120	38	2.500
H140	140	44	3.500

Gewinde- schutz ArtNr.	Ø A [mm]	Länge L2 [mm]	(B1 [mm]
RH 1655	16	55	19
RH 1685	16	85	19
RH 2055	20	55	24
RH 2085	20	85	24
RH 2455	24	55	27
RH 2485	24	85	27
RH 3055	30	55	36
RH 3085	30	85	36
RH 3655	36	55	46
RH 3685	36	85	46

Bestellbeispiel:					
H80	3A16181	RH1655			
Fuß	Gewinde	Gewindeschutz			
H3A-Seri	e				

Gewinde- bolzen ArtNr.	Ø A [mm]	Länge L [mm]	Länge L1 [mm]	∕© B [mm]
3A 16181	16	160	160	13
3A 16231	16	210	210	13
3A 20181	20	160	160	15
3A 20231	20	210	210	15
3A 24181	24	160	160	19
3A 24231	24	210	210	19
3A 30181	30	160	160	24
3A 30231	30	210	210	24
3A 36181	36	160	160	30
3A 36231	36	210	210	30

Bemerkung:

Alle Basiseinheiten können mit allen Bolzen/Gewindeschutz kombiniert werden. H3A ist FDA/USDA-zugelassen.

www.whm.net Änderungen vorbehalten

Produktbeschreibungen

Hygienische M-Serie

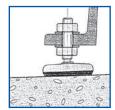
Die M-Serie hat abgerundete und polierte Oberflächen für Anwendungen, die häufiges Reinigen und Waschen erfordern. 5° Schwenkbarkeit ergibt sogar auf schrägen Oberflächen eine hervorragende Stabilität. Die Modelle gibt es in verschiedenen Ausführungen und breiter Auswahl von Lastkapazitäten, Bolzendurchmessern und Bolzenlängen. Die Serie gibt es auch mit Bodenlochausführung. Außerdem hat die M-Serie integrierte Einstellplatten, die eine volle Einstellung ohne Höhenverlust ermöglichen.

Bestellbeispiel M 75 12 100 — Gewindelänge Gewinde Ø Typ — Fußdurchmesser

Fuß- standard	Ø D [mm]	Höhe h [mm]	Belas- tung, daN [kg]
M 40	40	20	200
M 50	50	21	300
M 75	75	22	800
M 100	100	32	1.000
M 105	100	32	2.000
M 125	125	37	3.000
M 150	150	40	4.000
M 180	100	40	5.000

Gewinde- bolzen	Länge L, 100 mm	Länge L, 150 mm	ØB [mm]
Α	M 10*	M 10*	8
Α	M 12	M 12	10
Α	M 16	M 16	13
Α	M 20	M 20	15
Α	M 24	M 24	19
Α	M 30	M 30	24
Α	M 36	M 36	30
Α	M 42**	M 42**	36

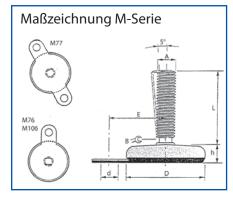
Fuß- verankerung	Ø D [mm]	Höhe h [mm]	Länge E [mm]	Lochdurchm. d [mm]	Belastung, daN [kg]
M 76	75	22	52	15	800
M 77	75	22	52	15	800
M 106	100	32	67	15	1.000


Vorteile

- Der Gummi entspricht dem FDA- Standard 177.2600 der Lebensmittelanforderungen
- ⇒ Der Gummi ist an das Gehäuse hygienisch anvulkanisiert
- ⇒ Breiter Temperaturbereich: -20° bis +100°C
- ⇒ 5° Schwenkbarkeit für erhöhte Stabilität

Anwendungen

- Montageausrüstung
- ⇒ Förderbänder
- Materialtransportausrüstung
- ⇒ Vibrations-Füllmaschinen
- ⇒ Verpackungs-Füllmaschinen
- **⇒** Schüttler


Montagebeispiel M-Serie

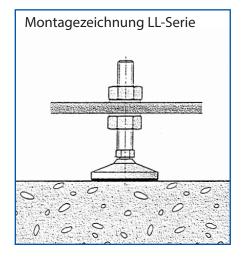
Standard

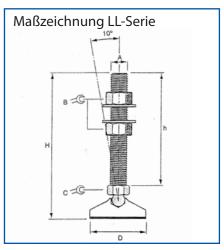
Verankerung

Produktbeschreibungen

LL-Serie

Die LL- Serie sind ideale Maschinenschuhe für Belastungen bis zu 2.000 kg. Die LL- Serie hat eine solide Konstruktion und ist mit einem Antirutschgummi für beste Reibung ausgerüstet. 10° Schwenkbarkeit ergibt eine ausgezeichnete Stabilität auch auf schrägen Böden.




Vorteile

- ⇒ Gelenkbolzen erlaubt Schrägstellung bis 10°
- → Mit Anti-Rutsch-Gummi für stabile Aufstellung
- ⇒ Verzinkter Stahl
- ⇒ Belastung bis 2.000 kg

Anwendungen

- Montagestationen
- **⇒** Kompressoren
- ⇒ Büro- und Haushaltsmaschinen
- → Ausrüstungen für Außengebrauch
- ➡ Kleine Werkstattmaschinen
- ⇒ Holzverarbeitende Maschinen

Modell	Ø D [mm]	Höhe H [mm]	Höhe h [mm]	(CB [mm]	∕©C [mm]	А	Bela- stung*, daN [kg]
LL 10	32	105	75	19	14	M 12	1.000
LL 12	45	105	75	19	14	M 12	1.200
LL 20	60	110	80	22	16	M 14	2.000

^{*} Für Belastungen bei 90° zum Gelenkfuß. Schräge Belastungen und bewegliche Belastungen reduzieren die höchstzulässige Belastung.

Produktbeschreibungen

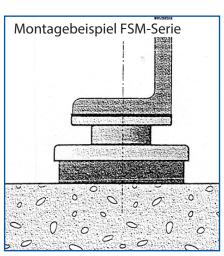
FSM-Serie

FSM ist eine Maschinenschuh-Serie, die speziell für freistehende Anwendungen mit hohem Anspruch an eine wirkungsvolle Dämpfung von Schwingungen und Lärm entwickelt wurde, wie sie von Maschinen und anderen Ausrüstungsgegenständen ausgehen.

FSM eignet sich besonders für Anwendungen, die keine Schraublöcher haben oder bei denen die Schraublöcher schwer zugänglich sind. FSM besteht aus einer nivellierenden Platte mit einem Belag aus Reibgummi, der auf einem eingebauten, schraubbaren

Zapfen in einer Stahlkappe ruht, und einem Dämpfungselement aus kräftigem Gummi.

Die Konstruktion des Maschinenschuhs widersteht den meisten Typen von Fetten, Säuren, Ölen und Kühlmitteln, die in der Industrie verwendet werden. Mit seiner durchdachten und geprüften Konstruktion mit ausgezeichneten nivellierenden Eigenschaften ist FSM die selbstverständlich beste Wahl für die meisten Maschinentypen, die in der Industrie verwendet werden, z. B. Werkzeugmaschinen, Werkstattmaschinen sowie Stanz- und Lochmaschinen.


Vorteile

- ⇒ Für Einsätze, bei denen keine Bolzenlöcher existieren oder zu erreichen sind
- Schalldämpfend
- ➡ Effektive Schwingungsdämpfung
- ⇒ Belastung bis 1.000 kg

Anwendungen

- ⇒ Stanzmaschinen
- → Werkstattmaschinen
- → Werkzeugmaschinen
- **⇒** Waagen
- **⇒** Messtische

	D2
Н	
¥	D1

Modell	Höhe H, min-max [mm]	Ø D1 [mm]	Ø D2 [mm]	(mm]	Belastung, daN [kg]
FSM 11	55-65	80	60	30	50-500
FSM 12	67-77	120	80	36	400-1.000

Produktbeschreibungen

LN-Serie, schwenkbar

Die Nivellierschuhe der LN-Serie bestehen aus zwei Teilen: Einem Fuß aus Polyamid und einem Gewindebolzen. Die Maschinenschuhe können mit jedem Gewindetyp und jeder Gewindegröße kombiniert werden, so dass die korrekte Konfiguration für jede Anwendung eingestellt werden kann. Die LN-Serie unterstützt jeden Maschinen- und Ausrüstungstyp, von der

Verpackungsmaschine bis hin zu Büromöbeln. Diese Schuhe sorgen für eine schnelle, einfache und genaue Nivellierung von allen Maschinen- und Ausrüstungstypen.

Sie sind lieferbar mit einer Vielzahl von Montagealternativen, einschließlich bolzenbefestigt, freistehend, bodenverankert und mit Schwingungsdämpfungsmatten.

Nivellierbolzen Kontermutter Befestigungslöcher Nylonfuß Schwenkfuß

Die richtige Wahl des LN-Maschinenschuhs

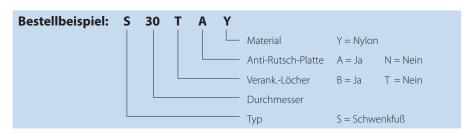
- 1. Wähle Fuß
- 2. Wähle Ø des Fußes gegenüber der Belastung
- 3. Wähle Anti-Rutsch-Gummi
- 4. Wähle Verankerungsalternative
- 5. Wähle Bolzen
- 6. Wähle Material, Gewinde und Bolzenlänge

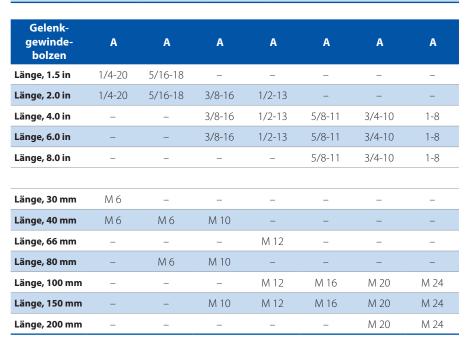
Vorteile

- ⇒ Schnelle, einfache und exakte Nivellierung von allen Typen von Maschinen/Ausrüstung
- ⇒ Viele verschiedene Ausführungen
- ⇒ Selbsteinstellend ohne die Stabilität zu verlieren
- ⇒ Leitet keine Elektrizität
- ⇒ Flexibel und widerstandskräftig gegen Kratzer
- **⇒** Kosteneffektiv
- ⇒ Bewegungsbereich: +/-3° oder +/-20°

Anwendungen

- **⊃** Elektronische Ausrüstung
- ⇒ Förderbänder
- ⇒ Industriewaagen
- → Medizinische Ausrüstung
- Verpackungsmaschinen


75



Produktbeschreibungen

Nivellierschuhe: Nylon

Gelenk- stellfuß	Durch- messer [mm]	Höhe [mm]	Länge [mm]	Loch- durchm. [mm]	Belastung, Ibs	Belastung, daN [kg]
S30	30	28	-	-	650	300
S40	40	28	-	-	900	400
S60	60	28	_	_	1.000	450
S80	80	28	55	9	1.000	450
S100	100	28	74	9	1.400	650
S120	120	28	94	9	1.400	650

76

Standard:

Die LN-Serie wird nicht mit Mutter oder Beilagscheiben geliefert.

Produktbeschreibungen

LS/LP-Serie, schwenkbar

Nivellierschuhe der LS/LP-Serie bieten die höchste Lastenkapazität für Anwendungen, bei denen nur eine Nivellierung erforderlich ist.

Zusätzlich haben die Schuhe eine niedrige Bauhöhe und sind kaum sichtbar. Das Edelstahl-Modell der LS-Serie ist korrosionsbeständig, hat eine glatte Oberfläche und ein hochqualitatives Design.

Die LP-Serie in pulverbeschichtetem Zinkdruckguss bietet verschiedene Alternativen für Oberflächenbehandlung und Farbe als auch Korrossionsbeständigkeit in aggressiven Umgebungen.

Nivellierbolzen Kontermutter Befestigungslöcher

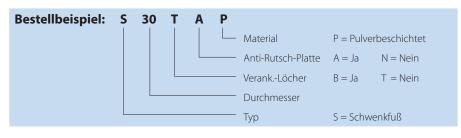
Die richtige Wahl des LS/LP-Maschinenschuhs

- 1. Wähle Fuß
- 2. Wähle Ø des Fußes gegenüber der Belastung
- 3. Wähle Anti-Rutsch-Gummi
- 4. Wähle Verankerungsalternative
- 5. Wähle Bolzen
- 6. Wähle Material, Gewinde und Bolzenlänge

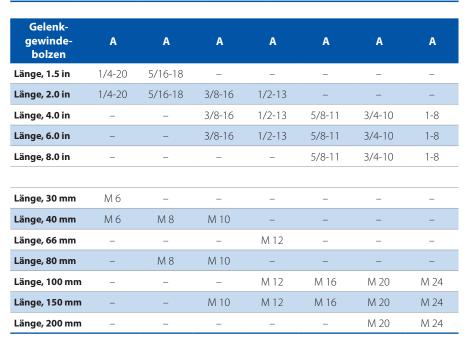
Vorteile

- ⇒ Schnelle, einfache und exakte Nivellierung aller Typen von Maschinen/Ausrüstung
- ⇒ Breites Sortiment von Ausführungen
- ⇒ Selbsteinstellend ohne die Stabilität zu verlieren
- ⇒ Flexibel und widerstandsfähig gegen Kratzer
- **⇒** Kosteneffektiv
- ⇒ Bewegungsbereich: +/-3° oder +/-20°

Anwendungen

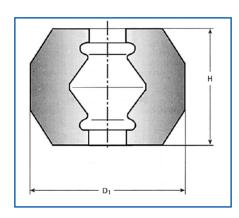

- → Industriewaagen
- ⇒ Kleine Maschinen
- ⇒ Holzverarbeitende Maschinen

77


- ⇒ Förderbänder
- **⊃** Racksysteme
- Arbeitsstationen

LS/LP-Serie, schwenkbar

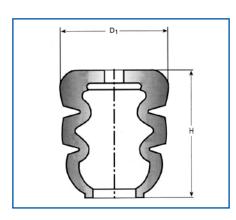
Gelenk- stellfuß	Durch- messer [mm]	Höhe [mm]	Länge [mm]	Loch- durchm. [mm]	Belastung, Ibs	Belastung, daN [kg]
S30	30	28	-	-	3.300	1.400
S40	40	28	-	-	4.500	2.000
S60	60	28	40	9	5.600	2.500
S80	80	28	55	9	6.800	3.000
S100	100	28	74	9	7.800	3.500
S120	120	28	94	9	7.800	3.500



Standard:

Die LS/LP-Serie wird nicht mit Mutter oder Beilagscheiben geliefert.

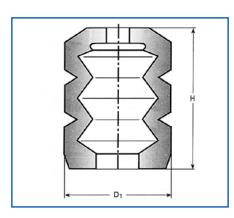
Typ TO


Kenndaten und Abmessungen (mm)

		Abmessun	gen / mm
Тур	Kern	Н	D ₁
TO 180/188	N	180	188
TO 150/155	N	150	155
TO 140/125	N	140	125
TO 120/140	N	120	140
TO 110/120	N	110	120
TO 95/140	N	95	140
TO 90/108	N	90	108
TO 88/130	N	88	130
TO 70/85	N	70	85
TO 60/75	N	60	75
TO 56/90	N	56	90
TO 56/140	N	56	140
TO 55/55	N	55	55
TO 36/70	N	36	70
TO 25/34	N	25	34

www.whm.net 79 Änderungen vorbehalten

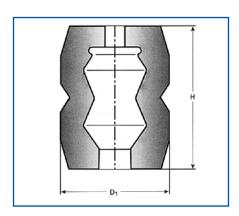
Typ KE


Kenndaten und Abmessungen (mm)

		Abmessung	gen / mm
Тур	Kern	н	D ₁
KE 180/120	А	180	120
KE 160/105	В	160	105
KE 120/75	М	120	75
KE 110/92	C	110	92
KE 96/96	А	96	96
KE 87/75	В	87	75
KE 110/80	A	110	80
KE 120/75	М	121	75

www.whm.net 80 Änderungen vorbehalten

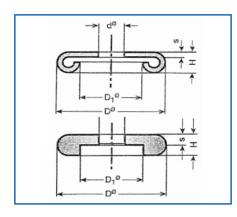
Typ ME


Kenndaten und Abmessungen (mm)

		Abmessung	gen / mm
Тур	Kern	H	D ₁
ME 235/135	C	235	135
ME 180/110	А	180	110
ME 160/110	В	160	110
ME 120/66	A	120	66
ME 80/60	C	80	60
ME 80/32	В	80	32

www.whm.net 81 Änderungen vorbehalten

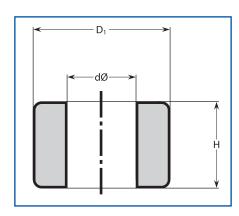
Typ EE


Kenndaten und Abmessungen (mm)

		Abmessur	ngen / mm
Тур	Kern	Н	D ₁
EE 143/130	A+N	180	188
EE 130/100	В	130	100
EE 125/92	В	125	92
EE 100/120	В	100	120
EE 96/96	В	96	96
EE 70/80	В	70	80

www.whm.net 82 Änderungen vorbehalten

Flansche


Kenndaten und Abmessungen (mm)

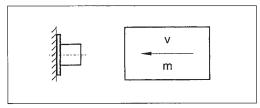
	Abmessungen / mm					
Тур	н	DØ	D ₁ Ø	d Ø	S	Gewinde
F 102	6,4	60,0	40,0	16,5	4,0	M 16
F 103	7,5	50,5	39,0	12,4	1,2	M 12
F 104	7,5	50,5	39,0	16,5	1,2	M 16
F 105	6,9	38,2	26,5	12,4	1,0	M 12
F 106	6,4	34,5	24,6	12,4	1,0	M 12
F 107	5,7	32,0	22,8	10,4	1,0	M 10
F 108	5,0	28,4	19,4	10,4	1,0	M 10
F 109	6,9	38,2	26,5	8,4	1,0	M 8
F 114	5,7	32,0	22,8	12,4	1,0	M 12

www.whm.net 83 Änderungen vorbehalten

Buchsen

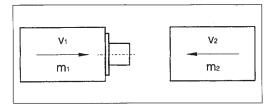
Kenndaten und Abmessungen (mm)

	Abmessungen / mm					
Тур	Н	D ₁	d Ø	Gewinde		
B 202	18,5	30	16,5	M 16		
B 203	8,5	31	16,5	M 16		
B 205	16,5	25	12,5	M 12		
B 208	16,5	20	12,5	M 12		
B 209	16,5	25	16,5	M 16		
B 210	15,0	20	12,5	M 12		
B 211	13,5	20	12,5	M 12		
B 212	10,5	20	12,5	M 12		
B 213	8,5	20	10,5	M 10		
B 214	8,5	20	12,5	M 12		
B 217	8,5	15	10,5	M 10		
B 218	6,5	15	8,5	M 8		
B 219	6,5	15	10,5	M 10		
B 220	4,0	15	10,5	M 10		
B 224	12,0	25	16,5	M 16		
B 225	6,5	20	12,5	M 12		


www.whm.net 84 Änderungen vorbehalten

4.1 Technische Grundlagen/Berechnungsbeispiele

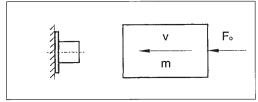
Berechnung und Auswahl der Anschlagpuffer


Masse gegen Anschlag

$$W = \frac{m v^2}{2}$$

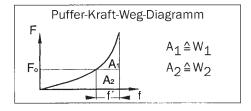
Berechnungsbeispiel folgt auf der nächsten Seite

Masse gegen Masse

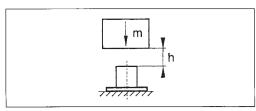


$$W = \frac{m_1 m_2 (v_1 + v_2)^2}{2(m_1 + m_2)}$$

$$m_1 = m_2 \text{ und } v_1 = v_2$$

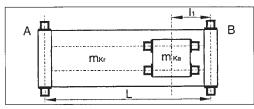

$$W = m v^2$$

Masse mit Antrieb gegen Anschlag



$$W = \frac{m \, v^2}{v}$$

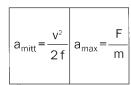
$$W_2 = F_0 \, f'$$


Freier Fall

$$W = m g h$$

Die Formel gilt nicht für die Berechnung von Aufzügen

Kran-Puffer-Berechnung


$$W_{B} = \frac{m_{B} v^{2}}{2}$$

$$m_{B} = \frac{m_{Kr} + m_{Ka} (L - I_{1})}{2}$$

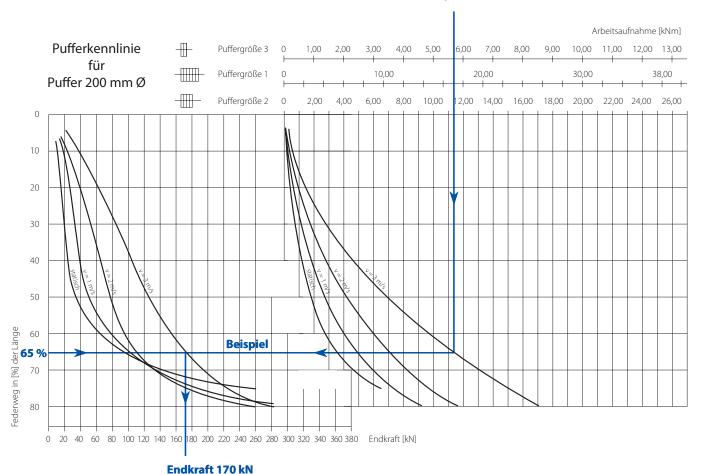
- pendelnde Massen bleiben unberücksichtigt
- Schwungmoment rotierender Fahrwerksteile ist zu berücksichtigen
- reduzierte Geschwindigkeit nach DIN 15018
 - v = 100 % v Nenn bei Katzen
 - v = 85 % v Nenn bei Kranen
 - v = 70 % v Nenn bei Kranen mit Bremsen

85

Formeln für die Berechnung der Verzögerung

a _{mitt}	- mittlere Verzögerung	m/s²	h	- Fallhöhe	m	m _B - Masse an Schiene B	kg
ama	x - maximale Verzögerung	m/s²	L	- Schienenabstand	m	v -Geschwindigkeit	m/s
	- Antriebskraft	kN	1	- Abstand m _{Ka} von B	m	v 1/2 - Geschwindigkeit Körper 1 bzw. 2	m/s
F	- Pufferendkraft	kN		- Masse	kg	W - kinetische Energie	kNm
f	- Federweg des Puffers	mm	m_{Kr}	- Masse Kran ohne Katze	kg	W ₁ -kinetische Energie	kNm
f'	- wirkender Federweg	mm	m _{Ka}	- Masse der Katze	kg	., /	kNm
g	- Erdbeschleunigung	9,81 m/s ²	m1/m2	-Masse Körper 1 bzw. 2	kg	W _{zul} -zulässige Energieaufnahme	kNm

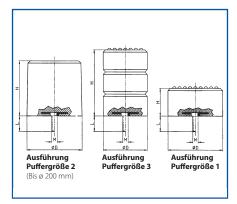
4.1 Technische Grundlagen/Berechnungsbeispiele


Beispiel für die Berechnung und Auswahl

eines Anschlagpuffers aus PUzell 30

Anwendung:	Masse gegen Anschlag
Berechnungsformel:	$W = \frac{m v^2}{2}$
Vorgaben:	Masse m = 2.490 kg Geschwindigkeit = 3,0 m/s Federweg = 65 % der Pufferlänge
Berechnung:	$W = \frac{2.490 \cdot 9,0}{2}$ = 11.200 Nm = 11,2 kNm
Auswahl der Puffergröße:	Lfd. Nr. 14, Größe 2 Ø 200 x 200 mm

86


www.whm.net Änderungen vorbehalten

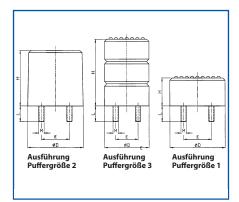
4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

Ausführung

(mit einem Gewindebolzen)

Ausführung mit Außengewinde oder Innengewinde

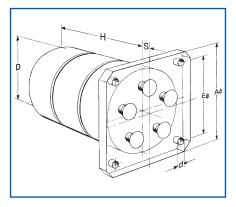
Lfd. Nr.	Puffergröße	Maße D x H [mm]	Außengewinde	Innengewinde	Gewicht [kg]
0	2	70 x 70	M 12 x 35	M 12	0,25
1	1	80 x 40	M 12 x 35	M 12	0,21
2	2	80 x 80	M 12 x 35	M 12	0,31
3	3	80 x 120	M 12 x 35	M 12	0,42
4	1	100 x 50	M 12 x 35	M 12	0,31
5	2	100 x 100	M 12 x 35	M 12	0,52
6	3	100 x 150	M 12 x 35	M 12	0,73
7	1	125 x 63	M 12 x 35	M 12	0,51
8	2	125 x 125	M 12 x 35	M 12	0,92
9	3	125 x 190	M 12 x 35	M 12	1,32
10	1	160 x 80	M 12 x 35	M 12	0,95
11	2	160 x 160	M 12 x 35	M 12	1,80
12	3	160 x 240	M 12 x 35	M 12	2,66
13	1	200 x 100	M 12 x 35	M 12	1,76
14	2	200 x 200	M 12 x 35	M 12	3,43
15	3	200 x 300	M 12 x 35	M 12	5,10
16	1	250 x 125	M 24 x 80	M 24	5,40
17	2	250 x 250	M 24 x 80	M 24	8,50
18	3	250 x 375	M 24 x 80	M 24	11,50
19	1	315 x 158	M 24 x 80	M 24	8,50
20	2	315 x 315	M 24 x 80	M 24	14,65
21	3	315 x 475	M 24 x 80	M 24	20,80
22	1	400 x 200	M 30 x 80	M 30	16,50
23	2	400 x 400	M 30 x 80	M 30	29,10
24	3	400 x 600	M 30 x 80	M 30	41,60


www.whm.net 87 Änderungen vorbehalten

4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

Ausführung

(mit zwei Gewindebolzen)


Lfd. Nr.	Puffergröße	Maße D x H [mm]	Außengewinde	Abstand E	Gewicht [kg]
1	1	100 x 50	M 12 x 35	50	0,44
2	2	100 x 100	M 12 x 35	50	0,67
3	3	100 x 150	M 12 x 35	50	0,86
4	1	125 x 63	M 12 x 35	63	0,64
5	2	125 x 125	M 12 x 35	63	1,05
6	3	125 x 190	M 12 x 35	63	1,45
7	1	160 x 80	M 12 x 35	80	1,08
8	2	160 x 160	M 12 x 35	80	1,93
9	3	160 x 240	M 12 x 35	80	2,79
10	1	200 x 100	M 12 x 35	100	2,17
11	2	200 x 200	M 12 x 35	100	3,84
12	3	200 x 300	M 12 x 35	100	5,51
13	1	250 x 125	M 24 x 80	125	6,79
14	2	250 x 250	M 24 x 80	125	9,89
15	3	250 x 375	M 24 x 80	125	12,89
16	1	315 x 158	M 24 x 80	160	9,89
17	2	315 x 315	M 24 x 80	160	16,04
18	3	315 x 475	M 24 x 80	160	22,19
19	1	400 x 200	M 30 x 80	200	17,89
20	2	400 x 400	M 30 x 80	200	30,49
21	3	400 x 600	M 30 x 80	200	43,00

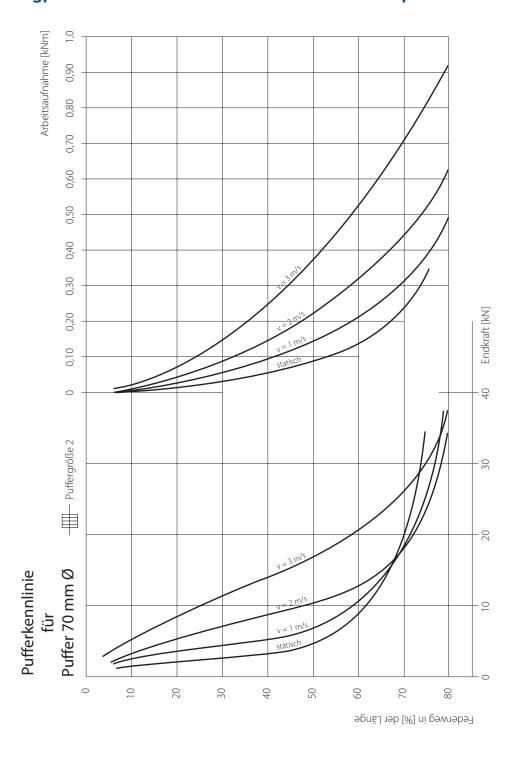
www.whm.net 88 Änderungen vorbehalten

4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

Ausführung (mit quadratischer Grundplatte)

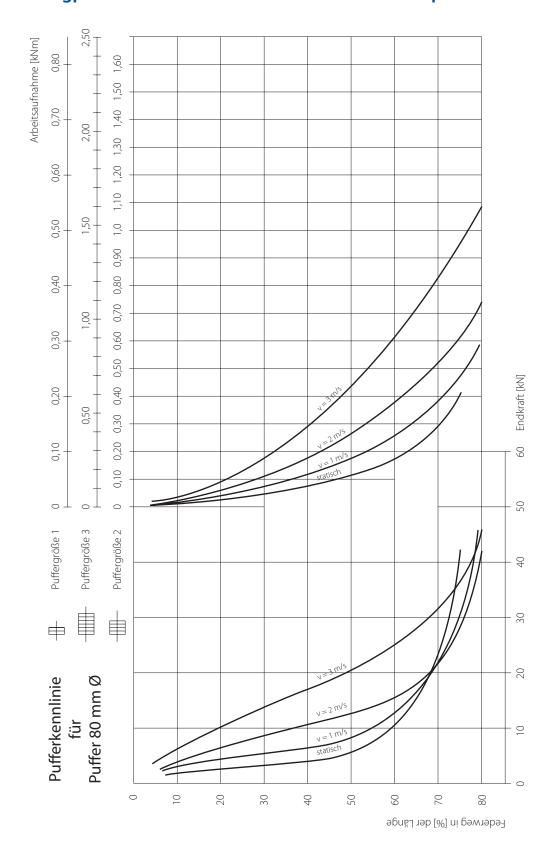
Lfd. Nr.	Puffer- größe	Maße Puffer [mm] D x H	Maße Platte [mm] A x E x S x d	Gewicht [kg]	Ausführung der Grundplatten	Sonderaus- führungen
1	1	80 x 40	110 x 80 x 10 x 12,5	0,40		
2	2	80 x 80	110 x 80 x 10 x 12,5	0,60		
3	3	80 x 120	110 x 80 x 10 x 12,5	0,70		
4	1	100 x 50	125 x 100 x 10 x 12,5	0,60	n! ge!	
5	2	100 x 100	125 x 100 x 10 x 12,5	0,90	Grundplatten aus Aluminium! Grundplatten aus Kunststoff (Polyamid PA6GF20) auf Anfragel	
6	3	100 x 150	125 x 100 x 10 x 12,5	1,15	umst uf A	
7	1	125 x 63	160 x 125 x 12 x 17,0	1,20	s Alt us Ku 0) au	
8	2	125 x 125	160 x 125 x 12 x 17,0	1,65	n au: GF2	
9	3	125 x 190	160 x 125 x 12 x 17,0	2,25	tter atte PA60	
10	1	160 x 80	200 x 160 x 12 x 17,0	2,20	dpla dpla	
11	2	160 x 160	200 x 160 x 12 x 17,0	3,10	runc	
12	3	160 x 240	200 x 160 x 12 x 17,0	4,00	(Po G	
13	1	200 x 100	250 x 200 x 14 x 21,0	4,00		
14	2	200 x 200	250 x 200 x 14 x 21,0	5,80		
15	3	200 x 300	250 x 200 x 14 x 21,0	7,50		barl
16	1	250 x 125	315 x 250 x 15 x 21,0	7,50		Ab Ø 160 mm mit Seilsicherung lieferbar!
17	2	250 x 250	315 x 250 x 15 x 21,0	11,00		<u>iii</u>
18	3	250 x 375	315 x 250 x 15 x 21,0	15,00		srur
19	1	315 x 158	400 x 315 x 15 x 21,0	26,00		iche
20	2	315 x 315	400 x 315 x 15 x 21,0	33,00	=:	Seils
21	3	315 x 475	400 x 315 x 15 x 21,0	41,00	Sta	mit !
22	1	400 x 200	500 x 400 x 20 x 25,0	51,00	aus	Ē
23	2	400 x 400	500 x 400 x 20 x 25,0	66,00	ten	π 00 m
24	3	400 x 600	500 x 400 x 20 x 25,0	81,00	plat	2 16
25	1	500 x 250	630 x 500 x 20 x 25,0	88,00	Grundplatten aus Stahl!	Ab g
26	2	500 x 500	630 x 500 x 20 x 25,0	116,00		
27	3	500 x 750	630 x 500 x 20 x 25,0	146,00		
28	1	600 x 300	730 x 600 x 20 x 25,0	129,00		
29	2	600 x 600	730 x 600 x 20 x 25,0	178,00		
30	3	600 x 900	730 x 600 x 20 x 25,0	233,00		

www.whm.net 89 Änderungen vorbehalten

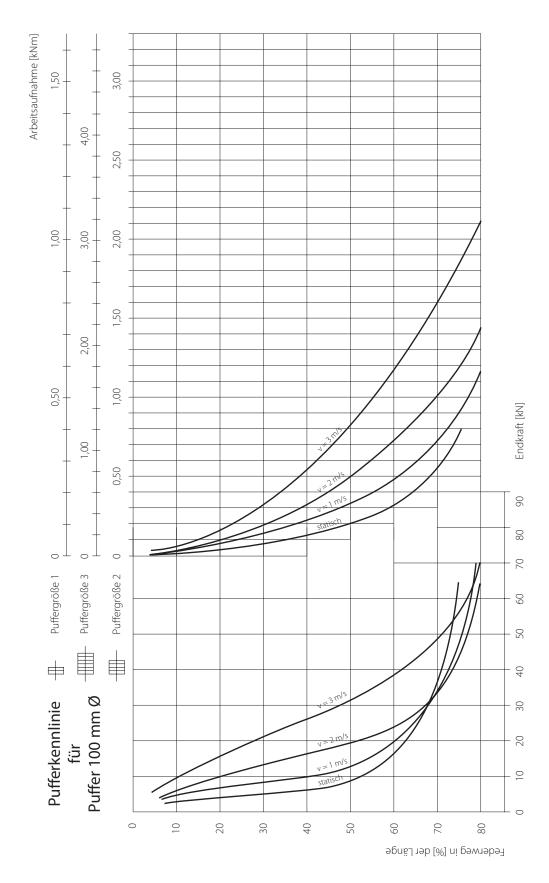

4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

Belastu	ngsdaten Ind Arbeitsa	ufnahme)		50)%		Fede		% der Lä	nge L	75 %			
(itiait c	THE THE DETEST	Puffermaße	Arbo	Endkra	ft F [kN] hme W [l	(Nml	Arbo	Endkra	ft F [kN] hme W [l	(Nm1	Arbo		ft F [kN]	kNm1
Lfd. Nr.	Puffergröße	ø D x L [mm]	0		[m/s]	3	0		[m/s]	3	0		[m/s]	3
0	2	70 x 70	4,3	6,9	10	17	14	15	16,5	25	39	28	26	32
1	1	80 x 40	0,08	0,12	0,19	0,33	0,18	0,25	0,35	0,58 27	0,33	30	0,48	0,76 35
2	2	80 x 80	0,05 5 0,10	0,08 8 0,16	0,13 12 0,26	0,22 20 0,44	0,11 15 0,22	0,15 16 0,30	0,22 18 0,44	0,36 27 0,71	0,20 42 0,40	0,24 30 0,48	0,30 28 0,60	35 0,95
3	3	80 x 120	5 0,15	8 0,24	12 0,39	20 0,66	15 0,32	16 0,45	18	27 1,70	42 0,60	30 0,72	28 0,90	35 1,42
4	1	100 x 50	8 0,10	12 0,16	18 0,25	30 0,43	23 0,20	24 0,29	27 0,42	42 0,69	65 0,40	48 0,47	42 0,57	55 0,92
5	2	100 x 100	8 0,20	12 0,33	18 0,50	30 0,86	23 0,40	24 0,57	27 0,84	42 1,38	65 0,80	48 0,95	42 1,15	55 1,85
6	3	100 x 150	8 0,3	12 0,49	18 0,75	30 1,29	23	24 0,85	27 1,27	42 2,07	65 1,20	48 1,42	42 1,72	55 2,77
7	1	125 x 63	12 0,20	20 0,32	30 0,50	50 0,82	37 0,40	38 0,57	42 0,82	65 1,28	105 0,77	75 0,90	70 1,15	85 1,80
8	2	125 x 125	12 0,40	20 0,65	30 1,00	50 1,65	37 0,80	38 1,12	42 1,64	65 2,70	105 1,55	75 1,80	70 2,30	85 3,60
9	3	125 x 190	12 0,60	20 0,97	30 1,50	50 2,47	37 1,22	38 1,70	42 2,50	65 4,10	105 2,32	75 2,70	70 3,45	85 5,40
10	1	160 x 80	20 0,40	30 0,67	50 1,10	80 1,75	61 0,85	64 1,20	69 1,70	107 2,85	165 1,65	120 1,95	110 2,40	140 3,80
11	2	160 x 160	20 0,80	30 1,35	50 2,20	80 3,50	61 1,70	64 2,40	69 3,50	107 5,70	165 3,30	120 3,90	110 4,80	140 7,60
12	3	160 x 240	20 1,20	30 2,02	50 3,30	80 5,25	61 2,60	64 3,70	69 5,20	107 8,70	165 4,95	120 5,85	110 7,20	140 11,40
13	1	200 x 100	35 0,80	50 1,30	75 2,10	120 3,45	97 1,65	100 2,40	110 3,40	170 5,60	260 3,20	190 3,76	170 4,70	220 7,50
14	2	200 x 200	35 1,60	50 2,60	75 4,20	120 6,90	97 3,40	100 4,80	110 6,80	170 11,20	260 6,40	190 7,50	170 9,60	220 15,00
15	3	200 x 300	35 2,40	50 5,90	75 6,30	120 10,35	97 4,60	100 7,20	110 10,10	170 16,80	260 9,60	190 11,25	170 14,10	220 22,50
16	1	250 x 125	50 1,50	75 2,50	120 4,00	190 6,75	150 3,40	155 4,80	169 6,70	262 10,90	410 6,25	300 7,25	270 9,00	350 14,50
17	2	250 x 250	50 3,00	75 5,00	120 8,00	190 13,50	150 6,80	155 9,20	169 13,40	262 21,90	410 12,50	300 14,50	270 18,00	350 29,00
18	3	250 x 375	50 4,50	75 7,50	120 12,00	190 20,25	150 10,05	155 13,75	169 20,00	262 33,50	410 18,75	300 21,75	270 27,00	350 43,50
19	1	315 x 158	80 3,10	120 5,00	180 8,25	300 13,50	235 6,50	245 9,20	268 13,30	415 21,60	650 12,50	480 15,00	440 18,50	350 29,00
20	2	315 x 315	80 6,20	120 10,00	180 16,50	300 27,00	235 13,00	245 18,00	268 26,50	415 43,00	650 25,00	480 30,00	440 37,00	350 58,00
21	3	315 x 475	80 9,30	120 15,00	180 24,75	300 40,50	235 19,50	245 28,00	268 39,50	415 65,00	650 37,50	480 45,00	440 55,50	350 87,00
22	1	400 x 200	125 6,25	190 10,50	300 16,50	490 27,50	385 12,00	400 26,00	440 39,00	670 44,00	1050 25,50	750 30,00	700 27,50	880 60,00
23	2	400 x 400	125 12,50	190 21,00	300 33,00	490 55,00	385 19,00	400 38,00	440 57,00	670 88,00	1050 51,00	750 60,00	700 75,00	880 120,00
24	3	400 x 600	125 18,75	190 31,50	300 49,50	490 82,50	385 27,00	400 55,00	440 82,00	670 132,00	1050 76,50	750 90,00	700 112,50	880 180,00
25	1	500 x 250	210 11,00	300 20,00	435 32,00	750 53,00	600 27,00	615 38,00	680 53,00	1045 88,00	1600 49,00	1150 57,00	1060 75,00	1385 117,00
26	2	500 x 500	210 24,00	300 40,00	435 63,00	750 108,00	600 53,00	615 72,00	680 107,00	1045 175,00	1600 99,00	1150 115,00	1060 150,00	1385 233,00
27	3	500 x 750	210 44,00	300 78,00	435 120,00	750 200,00	600 100,00	615 144,00	680 198,00	1045 327,00	1600 180,00	1150 215,00	1060 265,00	1385
28	1	600 x 300	265 17,00	380 25,00	590 40,00	955 70,00	585 33,00	820 48,00	1300 71,00	1990 117,00	2060 65,00	1500 75,00	1380 96,00	1770 153,00
29	2	600 x 600	265 30,00	380 52,00	590 81,00	955 138,00	585 68,00	820 97,00	1300 138,00	1990 226,00	2060 128,00	1500 148,00	1380 193,00	1770 307,00
30	3	600 x 900	265 50,00	380 89,00	590 141,00	955 242,00	585 115,00	820 168,00	1300 245,00	1990 397,00	2060 225,00	1500 260,00	1380 340,00	1770 535,00

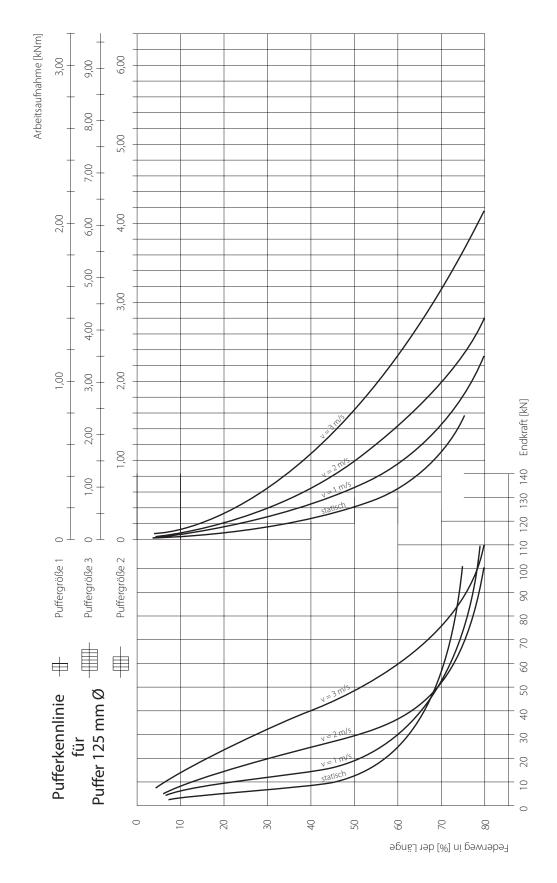
www.whm.net Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

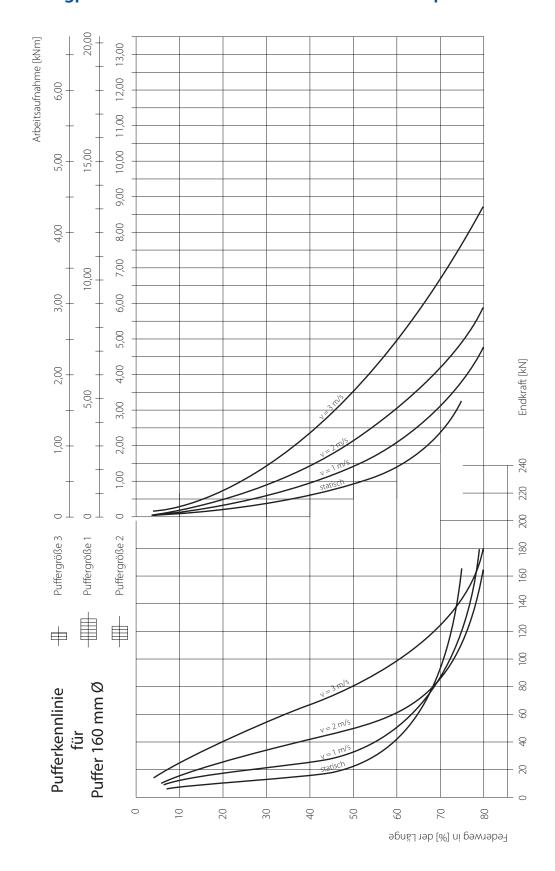
www.whm.net 91 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

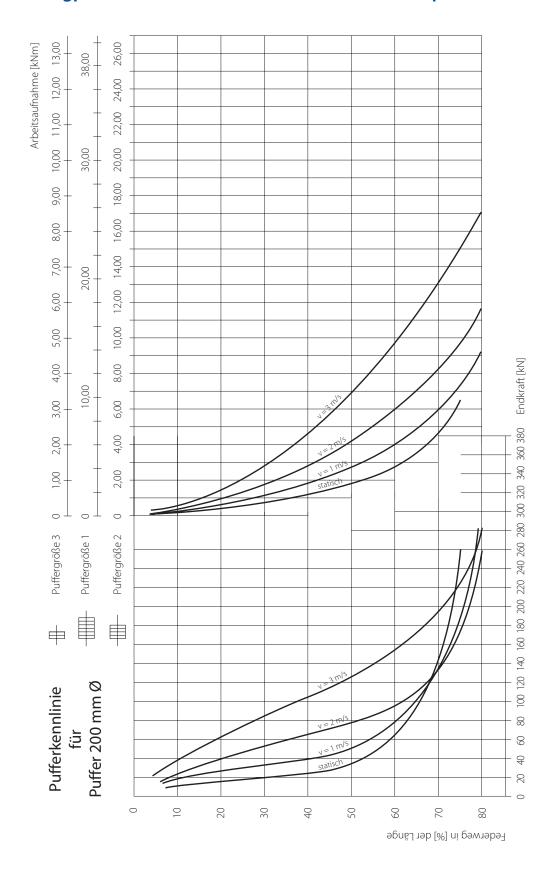
www.whm.net 92 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

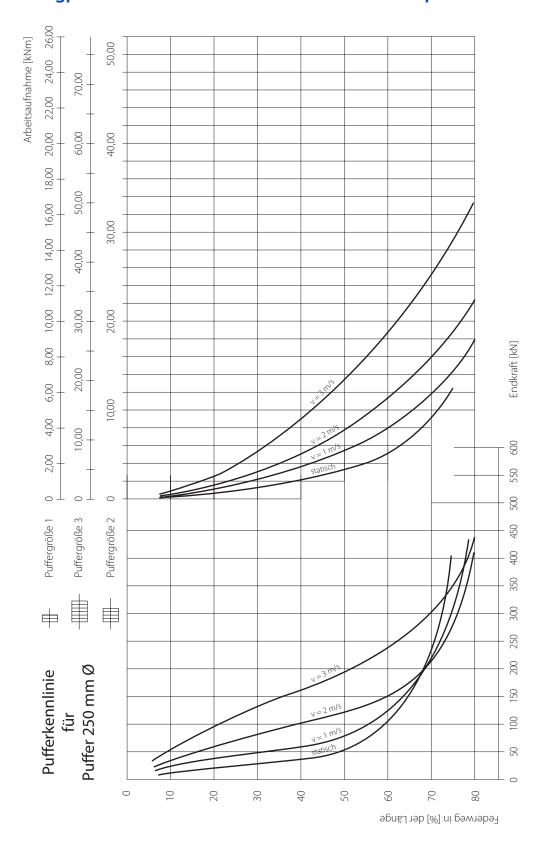
www.whm.net 93 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

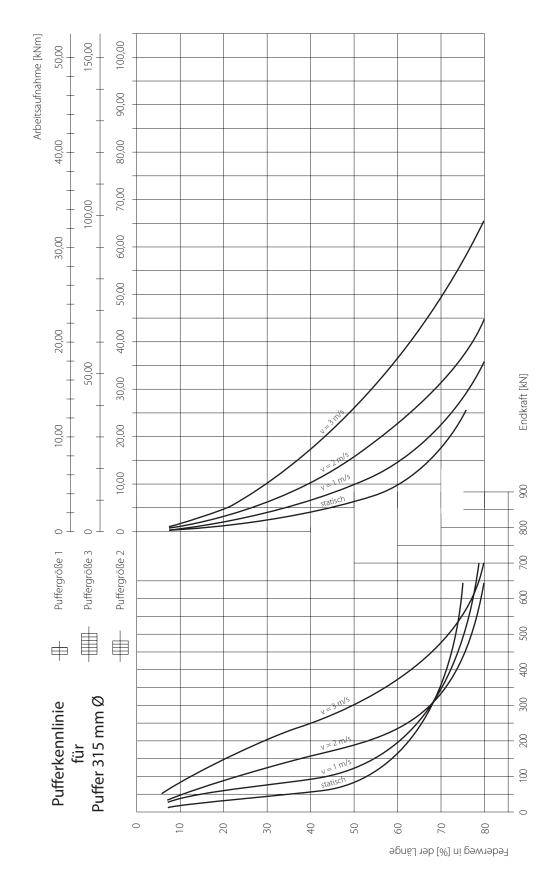
www.whm.net 94 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

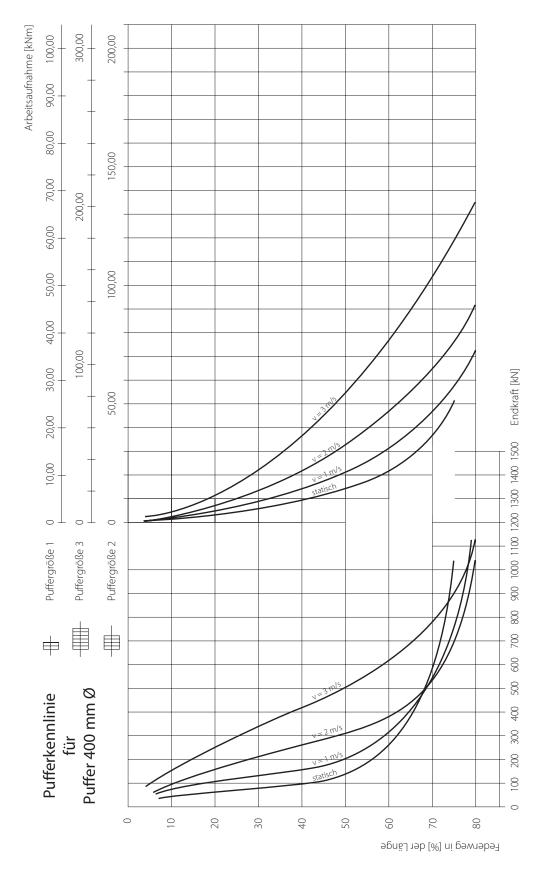
www.whm.net 95 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

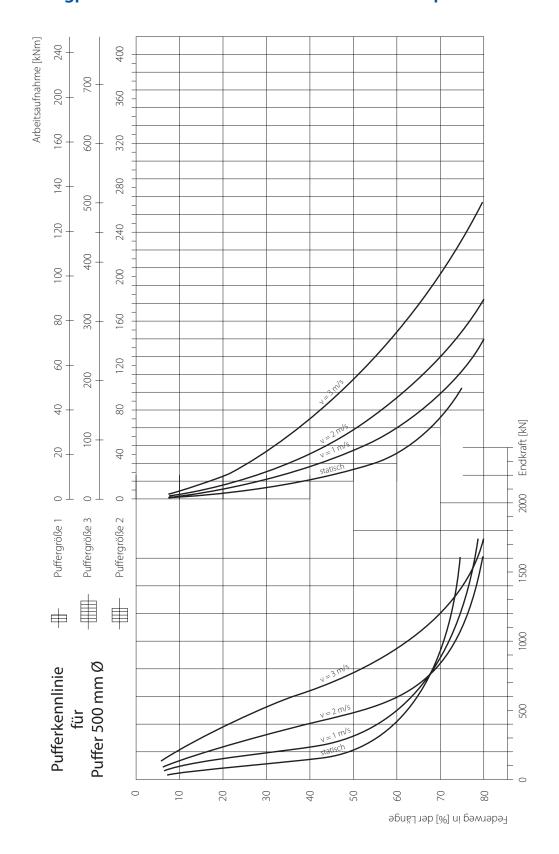
www.whm.net 96 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

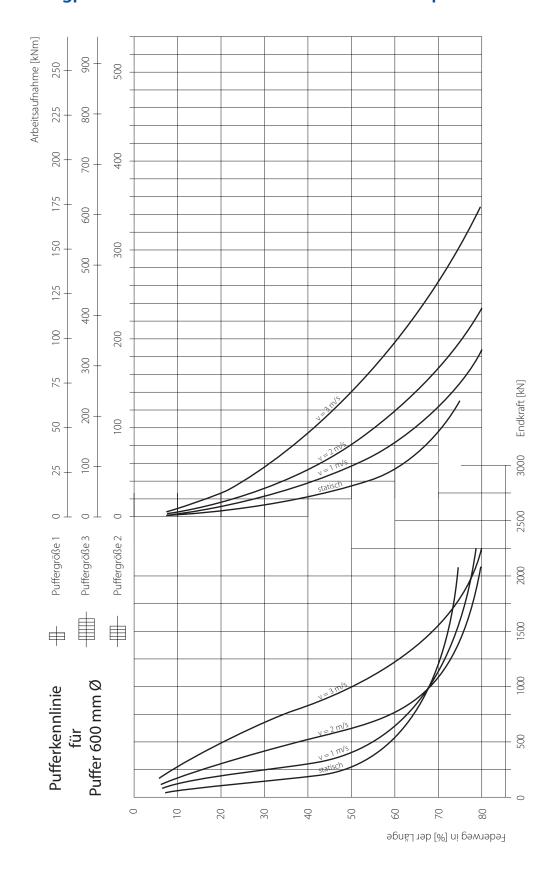
www.whm.net 97 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

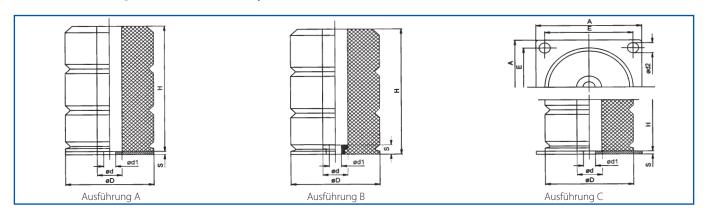
www.whm.net 98 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

www.whm.net 99 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

www.whm.net 100 Änderungen vorbehalten


4.2 Anschlagpuffer mit einem/zwei Gewindebolzen und quadratischer Grundplatte

www.whm.net 101 Änderungen vorbehalten

4.3 Aufsetzpuffer aus Polyurethan Elastomer

Ausführung A:

Mit runder Stahlplatte und zentraler Bohrung. Der Puffer wird mit einer Befestigungsschraube gesichert.

Ausführung B:

Ohne Stahlplatte, jedoch mit einer PA-Kunststoffbuchse im Zentrum. Diese Ausführung benötigt eine glatte und ebene Aufspannfläche.

Ausführung C:

Mit eckiger Stahlplatte und vier Befestigungsbohrungen bzw. einer zentralen Bohrung. Die Befestigung ist mit vier oder einer Schraube möglich.

Baugrößen

E - Baureihe	Abmessungen D x H [mm]	E - Baureihe	Abmessungen D x H [mm]
E1	100 x 60	E13	140 x 160
E1-45	100 x 60	E13-45	140 x 160
E1-55	100 x 60	E13-55	140 x 160
E2	125 x 100	E6	140 x 200
E2-40	125 x 100	E6-45	140 x 200
E2-45	125 x 100	E6-55	140 x 200
E2-55	125 x 100	E11	140 x 250
E3	125 x 160	E11-45	140 x 250
E3-45	125 x 160	E11-55	140 x 250
E3-55	125 x 160	E7	165 x 160
E4	125 x 200	E7-45	165 x 160
E4-45	125 x 200	E8	165 x 220
E4-55	125 x 200	E8-45	165 x 220
E5	140 x 100	E8-55	165 x 220
E5-45	140 x 100	E9	220 x 160
E5-55	140 x 100	E10	220 x 220

www.whm.net 102 Änderungen vorbehalten

Die Aufsetzpuffer aus einem Polyurethan Elastomer eignen sich ideal als Dämpfungselemente im Kran- und Aufzugsbau. Dafür spricht der Rohdichtebereich von 300-600 kg pro m² bei gleichzeitiger Verformbarkeit bis zu 80 %. Die Querdehnung wird auf ein Minimum gehalten. Dieser Kunststoff zeichnet sich durch äußerst beständige Elastizität und hoher Belastbarkeit aus. Er ist beständig gegen aliphatische Kohlenwasserstoffe wie Öle und Fette sowie gegen Ozon, UV-Strahlung und Alterung. Temperaturbereich: - 40 °C bis + 80 °C. Das Material versprödet nicht, sodass auch keine Bruchgefahr besteht. Dämpfungen: 25 bis 35 %.

Die zuverlässigen Lastbereiche sind für die Puffertypen A, B und C in EG-Baumusterprüfungen dokumentiert und entsprechen der Aufzeichnungsricht-linie 95/16/EG.

Die PU-Aufsetzpuffer sind in verschiedenen Abmessungen passend zu den Kabinen-Gewichten und -Geschwindigkeiten lieferbar.

Maßtabellen

Achtung: Durchmesser bei max. Zusammendrückung $< 1.4 \times D$

T - Baurei	he	Ausführung A, B und C		Ausführung A	Ausführung B	Ausführung C mit quadratischer Grundplatte		olatte	
Bau- größe	Abmessungen D x H [mm]	d [mm]	d1 [mm]	s [mm] +1,0	s [mm] +1,0	A [mm] ± 1,0	E [mm] ± 0,5	d2 [mm] ± 0,5	s [mm] ± 0,5
T1	80 x 80	35	17	4	15				
T2	100 x 80	35	17	4	15	130	100	14	6
T3	125 x 80	35	17	4	15	155	125	18	6
T4	165 x 80	35	17	6	15	205	165	18	6
T5	220 x 80	35	17	6	15	260	220	18	6

E - Baureil	he	Ausführung A, B und C		Ausführung A	Ausführung B	Ausführung C mit quadratischer Grundplatte			olatte
Bau- größe	Abmessungen D x H [mm]	d [mm]	d1 [mm]	s [mm] +1,0	s [mm] +1,0	A [mm] ± 1,0	E [mm] ±0,5	d2 [mm] ± 0,5	s [mm] ± 0,5
E1	100 x 160	35	17	4	15	130	100	14	6
E2	125 x 100	35	17	4	15	155	125	18	6
E3	125 x 160	35	17	4	15	155	125	18	6
E4	125 x 200	35	17	4	15	155	125	18	6
E5	140 x 100	35	17	4	15	180	140	18	6
E13	140 x 160	35	17	4	15	180	140	18	6
E6	140 x 200	35	17	4	15	180	140	18	6
E11	140 x 250	35	17	4	15	180	140	18	6
E7	165 x 160	35	17	6	15	205	165	18	6
E8	165 x 220	35	17	6	15	205	165	18	6
E9	220 x 160	35	17	6	15	260	220	18	6
E10	220 x 220	35	17	6	15	260	220	18	6

5. Elastomer-Federn (Polyurethan)

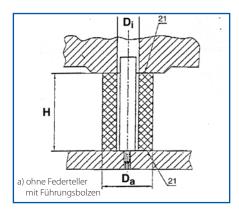
Mit Federn aus unserem Federnprogramm können Sie unterschiedlichste Problemlösungen realisieren!

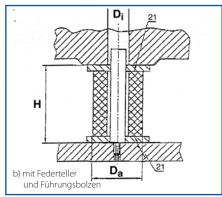
Die Herstellung erfolgt aus einem speziellen Polyurethan-System, welches über einzigartige Werkstoffeigenschaften verfügt. Sie erzielen durch den Einsatz dieser Federn größtmögliche Vorteile im Bereich der Dämpfung von Werkstoffen. Werkzeuge werden nicht mehr beschädigt – Materialermüdung, wie bei gebrochenen Stahlfedern, werden Sie mit unseren PU- Federn nicht erleben. Das verwendete Polyurethan-System verfügt über ein Kombinationsportfolio mit ausgezeichneten mechanischen und chemischen Eigenschaften. Dadurch gewährleisten wir lange Standzeiten bedingt durch hervorragende Abriebwerte bei einer notwendigen Elastizität, die ihren Ausdruck in einer hohen Bruchdehnung findet.

Die Federn sind resistent gegen gewisse Chemikalien und Öle.

Wir haben für Sie individuelle Problemlösungen im Bereich der Dämpfungs- und Federproblematik Ihrer Maschinen. Nutzen Sie unsere Erfahrung und unser Wissen.

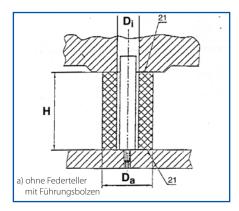
Alternativ liefern wir die Federn auch in CR Kautschuk.

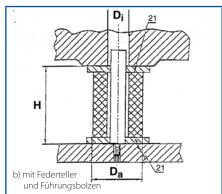

Besonderes Merkmal im Vergleich zu Stahlfedern ist die Notlaufeigenschaft und damit die besondere Betriebssicherheit. Lange Lebensdauer und völlige Wartungsfreiheit überzeugen im wirtschaftlichen Dauerbetrieb. Sonderformen und Zubehörteile ergänzen das Lieferprogramm. Alle Teile erfüllen hinsichtlich Leistung und Qualität die Anforderungen der Norm DIN ISO 10069-1.


Ihre Vorteile im Überblick

- ⇒ Hohe Belastbarkeit
- ⇒ Schutz von Mensch und Maschine durch besondere Sicherheit und Zuverlässigkeit, kein Bruch der Federn bei Überlastung
- Großer Wirtschaftlichkeitsfaktor durch völlige Wartungsfreiheit
- ⇒ Dämmung und Dämpfung von Luft- und Körperschall
- ⇒ Progressive Federcharakteristika
- Lange Lebensdauer durch besonderes Polyurethan-System
- ⇒ Beständigkeit gegenüber Fetten und Ölen
- Dauerhaft gute Performance bei unterschiedlichen Umgebungseinflüssen wie z. B. Temperaturen von −20° bis +80 °C

5. Elastomer-Federn (Polyurethan)




Außendurch- messer Da [mm]	Innendurch- messer Di [mm]	Höhe H [mm]	Außendurch- messer Da [mm]	Innendurch- messer Dj [mm]	Höhe H [mm]
16	6,5	12,5	50	17	40
16	6,5	16	50	17	50
16	6,5	20	50	17	63
16	6,5	25	50	17	80
20	8,5	16	50	17	100
20	8,5	20	63	17	32
20	8,5	25	63	17	40
20	8,5	32	63	17	50
25	10,5	20	63	17	63
25	10,5	25	63	17	80
25	10,5	32	63	17	100
25	10,5	40	63	17	125
32	13,5	32	80	21	32
32	13,5	40	80	21	40
32	13,5	50	80	21	50
32	13,5	63	80	21	63
40	13,5	32	80	21	80
40	13,5	40	80	21	100
40	13,5	50	80	21	125
40	13,5	63	100	21	32
40	13,5	80	100	21	40
50	17	32	100	21	50

www.whm.net 105 Änderungen vorbehalten

5. Elastomer-Federn (Polyurethan)

Außendurch- messer Da [mm]	Innendurch- messer Di [mm]	Höhe H [mm]	Außendurch- messer Da [mm]	Innendurch- messer Di [mm]	Höhe H [mm]
100	21	63	125	27	50
100	21	80	125	27	63
100	21	100	125	27	80
100	21	125	125	27	100
125	27	32	125	27	125
125	27	40	125	27	160

Material: PU, 80° Shore A, gelb

> PU, 90° und 96° Shore A, rot PU Sonderqualität, blau

CR-Kautschuck, 70° Shore A, schwarz Alternativ:

Toleranzen jeweils: ± 5° Shore A

Montagezubehör wie Federteller, Führungsbolzen auf Anfrage

Sonderabmessungen auf Anfrage

www.whm.net 106 Änderungen vorbehalten

6. Sonderelemente

Wir stellen uns der Herausforderung!

Neben den bislang gezeigten Artikeln führen wir auch zahlreiche Sonderelemente. Diese können beispielsweise im allgemeinen Maschinen- und Gerätebau, in der Elektroindustrie, in der Fahrzeugtechnik, in der Medizintechnik oder in der Lebensmittelindustrie Anwendung finden. Generell gesprochen gibt es kaum einen Industriezweig, in dem unsere Elemente nicht einsetzbar wären. Die Schwingungstechnik kennt keine Grenzen! Eine kleine Auswahl möglicher Ausführungen und Gestaltungen zeigen die dargestellten Abbildungen.

6. Sonderelemente

Ganz nach den Wünschen unserer
Kunden können Silikone und GummiMetall-Elemente wie Stellfüße, Anschlagpuffer, Elastomer-Federn oder Schwingschienen gefertigt werden. Eine individuelle Anpassung an die verschiedensten Wünsche und Erfordernisse der
Schwingungs- und Körperschallisolation,
Temperaturbeständigkeit, Dauerelastizität, elektrischen Isolation, Wetterbeständigkeit oder Formstabilität ist
somit möglich.

Größte Vielfalt wird erreicht, indem alle Komponenten frei gewählt werden können. Gummimischungen in verschiedenen Shore-Härten, Elastomere in vielen Farben, beliebige Geometrien nach Zeichnung oder vorgegebenen Mustern, Metalle nach Kundenwunsch sowie viele Möglichkeiten der Nachbearbeitung bereits standardisierter Teile machen eine Anpassung an nahezu alle Forderungen denkbar. Bei der Produktion setzen wir die modernsten Maschinen und Rohstoffe ein. Die Fertigung der benötigten Werkzeuge wird durch uns realisiert. Somit erreichen wir größte Flexibilität und die Produktvielfalt ist nahezu grenzenlos.

Im Programm haben wir beispielsweise Rundelemente, die als Stehlager ausgeführt und für die Lagerung von Motoren und stationären Aggregaten geeignet sind. Durch obere und untere Anschlagplatten sind die vertikalen Federwerte in Zug- und Druckrichtung begrenzt und eine Überlastung des Lagers kann ausgeschlossen werden. Weiterhin haben wir z.B. Flansch- oder Kastenlager für ein sehr breites Einsatzgebiet. Durch Ausnehmungen im Gummiquerschnitt sind unterschiedliche Federsteifigkeiten erreichbar. Ferner können bei uns auch Luftfedern für industrielle Anwendungen bezogen werden. Diese finden z. B. Einsatz in modernen Straßen- und Maschinenfahrzeugen. Darüber hinaus werden sie auch im Maschinen- und Apparatebau eingesetzt. In Verbindung mit der Pneumatik können von uns Systeme für die Schwingungsisolierung ausgelegt und geliefert werden. Sie sind vielseitig einsetzbar und z.B. als Hubzylinder oder Federelement geeignet.

Bei uns steht der Kunde stets an erster Stelle. Um eine optimale Beratung durchführen zu können, helfen uns Angaben zur Funktionsbeschreibung, den Einsatzbedingungen, der Betriebstemperatur und den Beanspruchungen mechanischer oder chemischer Art. Es können sowohl einzelne Teile bzw. Ersatzteile bezogen werden, die keiner Serie bedürfen, als auch Klein- oder Großserien.

Wir setzen auf Innovation und Wachstum, und das mit ganzheitlichem
Denken und Handeln. In Zeiten sich immer schneller verändernder Märkte sind Unternehmen erfolgreich, die aktiv mit konsequenten Strategien operieren. Wir setzen auf Innovation, Wachstum und kundenorientierter Produktentwicklung.

Sie haben noch Fragen?

Dann freuen wir uns auf Ihren Anruf, Ihr Fax oder Ihre E-Mail.

Wilhelm Herm. Müller GmbH & Co. KG Heinrich-Nordhoff-Ring 14, 30826 Garbsen Postfach 141230, 30812 Garbsen

Tel. +49 5131 4522-0 Fax: +49 5131 4522-110 E-Mail: info@whm.net

Unser Leistungsspektrum:

- Antriebstechnik
- Kunststofftechnik
- Gummitechnik
- Produktion
- Technische Beratung
- Konstruktionsservice

WILHELM HERM. MÜLLER

Entwicklung. Service. Partnerschaft.

Deutschland

Wilhelm Herm. Müller GmbH & Co. KG Heinrich-Nordhoff-Ring 14 · 30826 Garbsen Postfach 141230 · 30812 Garbsen Tel. +49 5131 4522-0 Fax: +49 5131 4522-110 E-Mail: info@whm.net www.whm.net

Niederlassung Leipzig

Westringstraße 160 · 04435 Schkeuditz Tel. +49 34205 785-0 Fax: +49 34205 785-10 E-Mail: Niederlassung.Leipzig@whm.net www.whm.net

Polen

W. H. Müller Polska Sp. z o.o. ul. Solna 20 · 85-862 Bydgoszcz Tel. +48 52 349 07 15 Fax: +48 52 349 00 75 E-Mail: whm@whm.pl www.whm.pl

Tschechien

W. H. Müller, s.r.o.
Brněnská 995 · 664 42 Modřice
Tel. +420 543 211 008
Fax: +420 543 212 343
E-Mail: whm@whm.cz
www.whm.cz

